Return to search

Experimental effectiveness of rock fracture grouting

The objective of this investigation is to experimentally determine the effectiveness of fracture sealing in welded tuff using ordinary portland cement and microfine cement grouts. Fracture grouting will most likely be used to seal fractures intersecting high level nuclear waste repositories. Fractures are potential pathways for the migration of radionuclides. Laboratory experiments have been performed on seventeen tuff cylinders. (1) tension induced cracks, (2) natural and, (3) sawcut surfaces serve as fractures. Prior to grouting, the hydraulic conductivity of the intact rock and that of the fractures themselves are measured under a range of normal stresses. Grouts are injected through axial boreholes at pressures of 0.3 to 4.1 MPa while holding fractures under a constant normal stress. Five grout formulations have been selected. Minor amounts of bentonite (0 to 5 percent by weight) have been added to these grouts to increase stability. Water to cement ratios range from 0.45 to 1.0. Permeameter testing of grouted fractures is used to evaluate the effectiveness of fracture grouting.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/291736
Date January 1990
CreatorsSharpe, Colin James, 1962-
ContributorsDaemen, Jaak J. K.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds