Return to search

Interfacial Behavior in Polymer Derived Ceramics and Salt Water Purification Via 2D MOS2

In the present dissertation, the behavior of the internal potential barrier in a polymer-derived amorphous SiAlCN ceramic was studied by measuring its complex impedance spectra at various dc bias as well as different testing and annealing temperatures. The complex impedance spectra of the polymer-derived a-SiAlCN were measured under various dc bias voltages in a temperature range between 50 and 150°C, as well as different annealing temperatures (1100-1400 °C). All spectra, regardless of temperature and bias, consist of two semi-circular arcs, corresponding to the free-carbon phase and the interface, respectively. The impedance of the free-carbon phase is independent of the bias, while that of the interface decreased significantly with increasing dc bias. It is shown that the change of the interfacial capacitance with the bias can be explained using the double Schottky barrier model. The charge-carrier concentration and potential barrier height were estimated by comparing the experimental data and the model. The results revealed that increasing testing temperature led to an increased charge-carrier concentration and a reduced barrier height, both following Arrhenius dependence, whereas the increase in annealing temperature resulted in increased charge-carrier concentration and barrier height. The phenomena were explained in terms of the unique bi-phasic microstructures of the material. The research findings reveal valuable microstructural information of temperaturedependent properties of polymer derived ceramics, and should contribute towards more precise understanding and control of the electrical as well as dielectric properties of polymer derived ceramics. Furthermore, the desalination performances and underlying mechanisms of two-dimensional CVD-grown MoS2 layers membranes have been experimentally assessed. Based on a successful large-area few-layer 2D materials growth, transfer and integration method, the 2D MoS2 layers membranes showed preserved chemical and microstructural integrity after integration. The few-layer 2D MoS2 layers demonstrated superior desalination capability towards various types of seawater salt solutions approaching theoretically-predicted values. Such performances are attributed to the dimensional and geometrical effect, as well as the electrostatic interaction of the inherently-present CVD-induced atomic vacancies for governing both water permeation and ionic sieving at the solution/2D-layer interfaces.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-7746
Date01 January 2019
CreatorsLi, Hao
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0013 seconds