In this research, we focus on the early prediction of whether topics are likely to generate significant controversy (in the form of social media such as comments, blogs, etc.). Controversy trend detection is important to companies, governments, national security agencies, and marketing groups because it can be used to identify which issues the public is having problems with and develop strategies to remedy them. For example, companies can monitor their press release to find out how the public is reacting and to decide if any additional public relations action is required, social media moderators can moderate discussions if the discussions start becoming abusive and getting out of control, and governmental agencies can monitor their public policies and make adjustments to the policies to address any public concerns.
An algorithm was developed to predict controversy trends by taking into account sentiment expressed in comments, burstiness of comments, and controversy score. To train and test the algorithm, an annotated corpus was developed consisting of 728 news articles and over 500,000 comments on these articles made by viewers from CNN.com. This study achieved an average F-score of 71.3% across all time spans in detection of controversial versus non-controversial topics. The results suggest that it is possible for early prediction of controversy trends leveraging social media.
Identifer | oai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04152013-114747 |
Date | 28 April 2013 |
Creators | Chimmalgi, Rajshekhar Vishwanath |
Contributors | Knapp, Gerald, Chen, Jianhua, Houston, Andrea |
Publisher | LSU |
Source Sets | Louisiana State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lsu.edu/docs/available/etd-04152013-114747/ |
Rights | unrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. |
Page generated in 0.0017 seconds