Return to search

Processing, Microstructure and Mechanical Behavior of Nanocomposite Multilayers

Nanoscale multilayer coatings have high potential for numerous engineering applications because they can exhibit enhanced properties due to nanoscale effects and combine different properties from individual components. At present, scale effects on the mechanical behavior of multilayers are not well understood. Three multilayer nanocomposite systems, namely Al/Al2O3, Ti/TiN, and Cr/a-C, have been synthesized by using a dual-gun e-beam physical vapor deposition, to investigate the effect of layer thickness, the nature of components and their microstructures on the mechanical behavior. The deposited Al and Ti nanolayers were found to have polycrystalline fcc and hcp structure, respectively, the Cr and TiN layers had fine columnar bcc and fcc structure, respectively, and the Al2O3 and C layers were amorphous. Nanoscale effects were observed in all three systems with the metal layer thickness affecting significantly the mechanical behavior. The hardness response of the present systems can be described as a function of the metal layer thickness by a Hall-Petch relationship. A critical Al layer thickness of 40 nm, below which there was no further hardness enhancement, was found for the Al/Al2O3 multilayers. The critical Al layer thickness could be predicted by previous theoretical models. A hardness increase was observed down to a Ti layer thickness of 5 nm for the Ti/TiN system. The strengthening of the Ti/TiN multilayers was consistent with the macroyield maps based on a confined layer slip model. Hardness in the Cr/a-C system showed a continuous increase down to a Cr layer thickness of 20 nm. The fracture toughness of the monolithic ceramic phase was significantly improved by introducing a metal/ceramic multilayered structure. The wear behavior of the present multilayers was mainly controlled by the ceramic phase. The Cr/a-C multilayers achieved a low friction coefficient (~0.1) and low wear rate (~10-5 mm3/N m). The present research shows that properties can be tailored by appropriate selection of layer thickness and nature of individual components.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-06222004-162727
Date23 June 2004
CreatorsQi, Zuqiang
ContributorsT. Warren Liao, Ioan Negulescu, Efstathios I. Meletis, Mark G. Davidson, Guoxiang Gu, Oscar Hidalgo-Salvatierra
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-06222004-162727/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds