Tissue engineering aims to develop viable tissue constructs that mimic native tissues by seeding cells onto a biodegradable scaffold. In this study, it was hypothesized that dynamic fluid flow coupled with FGF-2 treatment would enhance in vitro recellularization of porcine aortic valves. Decellularized aortic valve leaflets were seeded with porcine valvular interstitial cells in a rotating wall bioreactor, a rocker plate and static conditions. To determine the optimal condition for recellularization, the scaffolds were recellularized with and without the addition of FGF-2 (n=3). Follow-up experiments were performed to analyze the molecular mechanisms involved in the FGF-2 activation pathway. The results demonstrated high cell density and high protein levels and gene expression under dynamic conditions especially in the rotating wall bioreactor recellularized scaffolds. In conclusion,the rotating wall bioreactor conditions might have stimulated the interstitial cells to produce more FGF-2 and increase FGFR-2 expression and TGF-Beta/SMAD signaling pathway plays a vital role in this.
Identifer | oai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-5633 |
Date | 15 December 2012 |
Creators | Varghese, Divina |
Publisher | Scholars Junction |
Source Sets | Mississippi State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Page generated in 0.0016 seconds