A digital computer model of a diesel engine and load is developed which takes into account in cycle calculations the input temperature and pressure, mass of fuel injected, angle of injection, and cylinder temperature and pressure, and gives as outputs the average torque and speed. A typical heat release curve from a practical engine test is used with ignition delay considered constant in time. Results from the program are validated by comparison with data taken from laboratory engine tests. This model is subsequently linearized to obtain the transfer function matrix relating input manifold pressure, mass of fuel injected, and angle of advance to output torque and speed. The design of a feedback controller is then investigated using pole and zero placement techniques, the system inputs and outputs being demanded and achieved torque and speed .
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:350961 |
Date | January 1984 |
Creators | Eissa, M. A. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/10318 |
Page generated in 0.0765 seconds