Return to search

Human body analysis using depth data

Human body analysis is one of the broadest areas within the computer vision field. Researchers have put a strong effort in the human body analysis area, specially over the last decade, due to the technological improvements in both video cameras and processing power. Human body analysis covers topics such as person detection and segmentation, human motion tracking or action and behavior recognition. Even if human beings perform all these tasks naturally, they build-up a challenging problem from a computer vision point of view. Adverse situations such as viewing perspective, clutter and occlusions, lighting conditions or variability of behavior amongst persons may turn human body analysis into an arduous task.
In the computer vision field, the evolution of research works is usually tightly related to the technological progress of camera sensors and computer processing power. Traditional human body analysis methods are based on color cameras. Thus, the information is extracted from the raw color data, strongly limiting the proposals. An interesting quality leap was achieved by introducing the multiview concept. That is to say, having multiple color cameras recording a single scene at the same time. With multiview approaches, 3D information is available by means of stereo matching algorithms. The fact of having 3D information is a key aspect in human motion analysis, since the human body moves in a three-dimensional space. Thus, problems such as occlusion and clutter may be overcome with 3D information.
The appearance of commercial depth cameras has supposed a second leap in the human body analysis field. While traditional multiview approaches required a cumbersome and expensive setup, as well as a fine camera calibration; novel depth cameras directly provide 3D information with a single camera sensor. Furthermore, depth cameras may be rapidly installed in a wide range of situations, enlarging the range of applications with respect to multiview approaches. Moreover, since depth cameras are based on infra-red light, they do not suffer from illumination variations.
In this thesis, we focus on the study of depth data applied to the human body analysis problem. We propose novel ways of describing depth data through specific descriptors, so that they emphasize helpful characteristics of the scene for further body analysis. These descriptors exploit the special 3D structure of depth data to outperform generalist 3D descriptors or color based ones. We also study the problem of person detection, proposing a highly robust and fast method to detect heads. Such method is extended to a hand tracker, which is used throughout the thesis as a helpful tool to enable further research. In the remainder of this dissertation, we focus on the hand analysis problem as a subarea of human body analysis. Given the recent appearance of depth cameras, there is a lack of public datasets. We contribute with a dataset for hand gesture recognition and fingertip localization using depth data. This dataset acts as a starting point of two proposals for hand gesture recognition and fingertip localization based on classification techniques. In these methods, we also exploit the above mentioned descriptor proposals to finely adapt to the nature of depth data.%, and enhance the results in front of traditional color-based methods. / L’anàlisi del cos humà és una de les àrees més àmplies del camp de la visió per computador. Els investigadors han posat un gran esforç en el camp de l’anàlisi del cos humà, sobretot durant la darrera dècada, degut als grans avenços tecnològics, tant pel que fa a les càmeres com a la potencia de càlcul. L’anàlisi del cos humà engloba varis temes com la detecció i segmentació de persones, el seguiment del moviment del cos, o el reconeixement d'accions. Tot i que els essers humans duen a terme aquestes tasques d'una manera natural, es converteixen en un difícil problema quan s'ataca des de l’òptica de la visió per computador. Situacions adverses, com poden ser la perspectiva del punt de vista, les oclusions, les condicions d’il•luminació o la variabilitat de comportament entre persones, converteixen l’anàlisi del cos humà en una tasca complicada.
En el camp de la visió per computador, l’evolució de la recerca va sovint lligada al progrés tecnològic, tant dels sensors com de la potencia de càlcul dels ordinadors. Els mètodes tradicionals d’anàlisi del cos humà estan basats en càmeres de color. Això limita molt els enfocaments, ja que la informació disponible prové únicament de les dades de color.
El concepte multivista va suposar salt de qualitat important. En els enfocaments multivista es tenen múltiples càmeres gravant una mateixa escena simultàniament, permetent utilitzar informació 3D gràcies a algorismes de combinació estèreo. El fet de disposar d’informació 3D es un punt clau, ja que el cos humà es mou en un espai tri-dimensional.
Això doncs, problemes com les oclusions es poden apaivagar si es disposa de informació 3D. L’aparició de les càmeres de profunditat comercials ha suposat un segon salt en el camp de l’anàlisi del cos humà. Mentre els mètodes multivista tradicionals requereixen un muntatge pesat i car, i una celebració precisa de totes les càmeres; les noves càmeres de profunditat ofereixen informació 3D de forma directa amb un sol sensor. Aquestes càmeres es poden instal•lar ràpidament en una gran varietat d'entorns, ampliant enormement l'espectre d'aplicacions, que era molt reduït amb enfocaments multivista. A més a més, com que les càmeres de profunditat estan basades en llum infraroja, no pateixen problemes relacionats amb canvis d’il•luminació.

En aquesta tesi, ens centrem en l'estudi de la informació que ofereixen les càmeres de
profunditat, i la seva aplicació al problema d’anàlisi del cos humà. Proposem noves
vies per descriure les dades de profunditat mitjançant descriptors específics, capaços
d'emfatitzar característiques de l'escena que seran útils de cara a una posterior anàlisi
del cos humà. Aquests descriptors exploten l'estructura 3D de les dades de profunditat
per superar descriptors 3D generalistes o basats en color. També estudiem el problema de detecció de persones, proposant un mètode per detectar caps robust i ràpid.
Ampliem aquest mètode per obtenir un algorisme de seguiment de mans que ha estat utilitzat al llarg de la tesi. En la part final del document, ens centrem en l’anàlisi de les mans com a subàrea de l’anàlisi del cos humà. Degut a la recent aparició de les càmeres de profunditat, hi ha una manca de bases de dades públiques.
Contribuïm amb una base de dades pensada per la localització de dits i el reconeixement de gestos utilitzant dades de profunditat. Aquesta base de dades és el punt de partida de dues contribucions sobre localització de dits i reconeixement de gestos basades en tècniques de classificació. En aquests mètodes, també explotem les ja mencionades propostes de descriptors per millor adaptar-nos a la naturalesa de les dades de profunditat.

Identiferoai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/134801
Date04 December 2013
CreatorsSuau Cuadros, Xavier
ContributorsCasas Pla, Josep Ramon, Ruiz Hidalgo, Javier, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
PublisherUniversitat Politècnica de Catalunya
Source SetsUniversitat Politècnica de Catalunya
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Format160 p., application/pdf
SourceTDX (Tesis Doctorals en Xarxa)
Rightsinfo:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

Page generated in 0.0031 seconds