Many enhanced index funds are based on a quantitative model to control active risk and to acquire active return. In this thesis we first construct a multiple-factor model (MFM) and then use statistical methods to evaluate the significance and stability of factor explanatory power. Significant and stable factors are utilized to fine tune weights of T50 index fund portfolio by an intuitive weight allocation model to achieve the effect of return enhancement.
Empirical studies show that the multiple-factor model can explain the excess stock return effectively; the average R-Square of multiple-factor model reaches 49%. After analyzing the sensitivity of parameter of enhanced index weight allocation, the study finds that the original weight retention rate has linear relationship with active return and active risk of the T50 index fund. Adjusting the retention rate allows us to control the active return and active risk of T50 index fund. Furthermore, adjusting the original weight retention rate according to the Adj-R2 of multiple-risk factor model can effectively improve the stability of active return.
The study finds also that the expected rates of return which are calculated by multiple-risk factor model could not differentiate among future performance of the first your guarantee portfolios. Thus, the study adjusts the range of weight allocation to T50 constituent stocks with higher and lower expected return rates. The result shows that this adjustment increased the IR of the enhanced index funds.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0620109-005242 |
Date | 20 June 2009 |
Creators | Chen, Wei-chih |
Contributors | Lee, Chien-Chiang, Jeng,Yih, Chih-hsing Hung |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0620109-005242 |
Rights | campus_withheld, Copyright information available at source archive |
Page generated in 0.0018 seconds