This thesis describes experimental generation, manipulation and measurement of quantum information using photon pairs emitted in bulk crystals. Multi-photon sources engineered during the course of this thesis have proven to be ideal for original contributions in the field of optical quantum information.
In the first part of this dissertation, we study nonlocality, bound entanglement and measurement-based quantum computing using entangled resources produced by our source. First, we produced and characterised three-photon GHZ polarisation states. We then experimentally violate the long-standing Svetlichny's inequality with a value of 4.51, which is greater than the classical bound by 3.6 standard deviations. Our results agree with the predictions of quantum mechanics, rule out nonlocal hidden-variable theories and certify the genuine tripartite entanglement achievable by our source. Second, with four-photon polarisation states, we demonstrate bound entanglement in Smolin states and realize all of their conceptually important characteristics. Our results highlight the difficulties to achieve the critical condition of undistillability without completely losing entanglement. We conclude the first part by simulating, for the first time, valence-bond solid states and use them as a resource for measurement-based quantum computing. Affleck-Kennedy-Lieb-Tasaki states are produced with 87% fidelity and single-qubit quantum logic gates reach an average fidelity of 92% over all input states and rotations.
In the second part of this dissertation, we explore controlled waveform manipulation at the single-photon level. Specifically, we shrink the spectral bandwidth of a single photon from 1740 GHz to 43 GHz and demonstrate tunability over a range 70 times that bandwidth. The results are a considerable addition to the field of quantum frequency conversion and have genuine potential for technological applications.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/7790 |
Date | January 2013 |
Creators | Lavoie, Jonathan |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0018 seconds