To label words of interest into a predefined set of named entities have traditionally required a large amount of labeled in-domain data. Recently, the availability of pre-trained transformer-based language models have enabled multiple natural language processing problems to utilize transfer learning techniques to construct machine learning models with less task-specific labeled data. In this thesis, the impact of data augmentation when training a pre-trained transformer-based model to adapt to a named entity recognition task with few labeled sentences is explored. The experimental results indicate that data augmentation increases performance of the trained models, however the data augmentation is shown to have less impact when more labeled data is available. In conclusion, data augmentation has been shown to improve performance of pre-trained named entity recognition models when few labeled sentences are available for training. / Att kategorisera ord som tillhör någon av en mängd förangivna entiteter har traditionellt krävt stora mängder förkategoriserad områdesspecifik data. På senare år har det tillgängliggjorts förtränade språkmodeller som möjliggjort för språkprocesseringsproblem att lösas med en mindre mängd områdesspecifik kategoriserad data. I den här uppsatsen utforskas datautöknings påverkan på en maskininlärningsmodell för identifiering av namngivna entiteter. De experimentella resultaten indikerar att datautökning förbättrar modellerna, men att inverkan blir mindre när mer kategoriserad data är tillgänglig. Sammanfattningsvis så kan datautökning förbättra modeller för identifiering av namngivna entiteter när få förkategoriserade meningar finns tillgängliga för träning.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-318546 |
Date | January 2022 |
Creators | Mellin, David |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2022:211 |
Page generated in 0.0023 seconds