People with severe motor disabilities may communicate using their eye movements aided by a virtual keyboard and an eye tracker. Text entry by gaze may also benefit users immersed in virtual or augmented realities, when they do not have access to a physical keyboard or touchscreen. Thus, both users with and without disabilities may take advantage of the ability to enter text by gaze. However, methods for text entry by gaze are typically slow and uncomfortable. In this thesis we propose EyeSwipe as a step further towards fast and comfortable text entry by gaze. EyeSwipe maps gaze paths into words, similarly to how finger traces are used on swipe-based methods for touchscreen devices. A gaze path differs from the finger trace in that it does not have clear start and end positions. To segment the gaze path from the user\'s continuous gaze data stream, EyeSwipe requires the user to explicitly indicate its beginning and end. The user can quickly glance at the vicinity of the other characters that compose the word. Candidate words are sorted based on the gaze path and presented to the user. We discuss two versions of EyeSwipe. EyeSwipe 1 uses a deterministic gaze gesture called Reverse Crossing to select both the first and last letters of the word. Considering the lessons learned during the development and test of EyeSwipe 1 we proposed EyeSwipe 2. The user emits commands to the interface by switching the focus between regions. In a text entry experiment comparing EyeSwipe 2 to EyeSwipe 1, 11 participants achieved an average text entry rate of 12.58 words per minute (wpm) with EyeSwipe 1 and 14.59 wpm with EyeSwipe 2 after using each method for 75 minutes. The maximum entry rates achieved with EyeSwipe 1 and EyeSwipe 2 were, respectively, 21.27 wpm and 32.96 wpm. Participants considered EyeSwipe 2 to be more comfortable and faster, while less accurate than EyeSwipe 1. Additionally, with EyeSwipe 2 we proposed the use of gaze path data to dynamically adjust the gaze estimation. Using data from the experiment we show that gaze paths can be used to dynamically improve gaze estimation during the interaction. / Pessoas com deficiências motoras severas podem se comunicar usando movimentos do olhar com o auxílio de um teclado virtual e um rastreador de olhar. A entrada de texto usando o olhar também beneficia usuários imersos em realidade virtual ou realidade aumentada, quando não possuem acesso a um teclado físico ou tela sensível ao toque. Assim, tanto usuários com e sem deficiência podem se beneficiar da possibilidade de entrar texto usando o olhar. Entretanto, métodos para entrada de texto com o olhar são tipicamente lentos e desconfortáveis. Nesta tese propomos o EyeSwipe como mais um passo em direção à entrada rápida e confortável de texto com o olhar. O EyeSwipe mapeia gestos do olhar em palavras, de maneira similar a como os movimentos do dedo em uma tela sensível ao toque são utilizados em métodos baseados em gestos (swipe). Um gesto do olhar difere de um gesto com os dedos em que ele não possui posições de início e fim claramente definidas. Para segmentar o gesto do olhar a partir do fluxo contínuo de dados do olhar, o EyeSwipe requer que o usuário indique explicitamente seu início e fim. O usuário pode olhar rapidamente a vizinhança dos outros caracteres que compõe a palavra. Palavras candidatas são ordenadas baseadas no gesto do olhar e apresentadas ao usuário. Discutimos duas versões do EyeSwipe. O EyeSwipe 1 usa um gesto do olhar determinístico chamado Cruzamento Reverso para selecionar tanto a primeira quanto a última letra da palavra. Levando em consideração os aprendizados obtidos durante o desenvolvimento e teste do EyeSwipe 1 nós propusemos o EyeSwipe 2. O usuário emite comandos para a interface ao trocar o foco entre as regiões do teclado. Em um experimento de entrada de texto comparando o EyeSwipe 2 com o EyeSwipe 1, 11 participantes atingiram uma taxa de entrada média de 12.58 palavras por minuto (ppm) usando o EyeSwipe 1 e 14.59 ppm com o EyeSwipe 2 após utilizar cada método por 75 minutos. A taxa de entrada de texto máxima alcançada com o EyeSwipe 1 e EyeSwipe 2 foram, respectivamente, 21.27 ppm e 32.96 ppm. Os participantes consideraram o EyeSwipe 2 mais confortável e rápido, mas menos preciso do que o EyeSwipe 1. Além disso, com o EyeSwipe 2 nós propusemos o uso dos dados dos gestos do olhar para ajustar a estimação do olhar dinamicamente. Utilizando dados obtidos no experimento mostramos que os gestos do olhar podem ser usados para melhorar a estimação dinamicamente durante a interação.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-03072018-151733 |
Date | 30 January 2018 |
Creators | Kurauchi, Andrew Toshiaki Nakayama |
Contributors | Betke, Margrit, Morimoto, Carlos Hitoshi |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | English |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds