Return to search

Physical and Chemical Factors Controlling Carbon Gas Emissions and Organic Matter Transformation in Coastal Wetlands

Wetlands are important sinks for the atmospheric carbon (C) and play a major role in the global carbon cycle. However, factors impacting wetland soil C transformations and C gas production are not yet well understood. Elucidating these influences is especially important to Louisiana as wetlands are being impacted by salt water intrusion, subsidence and Mississippi river water diversion activities. This study evaluates, the effects of salinity, ions in river and sea water (K+, Ca2+) , clays and electron acceptors (NO3-, SO42-) on soil C transformations as well as C gas production from Louisiana coastal wetlands. Wetland soils were collected from forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) and various characterizations were carried out. Aerobic incubations showed that addition of either K+ or Ca2+ chloride salts significantly increased CO2 production from FS soil, but had little effect on CO2 production from FM soil. Clay addition (2 and 5%) to FM soil significantly decreased CO2 production compared to unamended soil (P < 0.02). A combination of 5% clay and 5 mM Ca2+ further decreased the CO2 production in this soil. Increase in salinity decreased CO2 production from both FS and FM soils.
In anaerobic incubations, addition of alternative electron acceptors, NO3- decreased CO2 production significantly whereas SO42- had little effect. Nitrate and SO42- decreased CH4 production but the NO3- almost completely inhibited CH4 production (>99%). Among the three wetland soils, FM exhibited the greatest denitrification potential (PDR), but it also tends to yield more N2O as compared to FS and SM soils. Soil organic C has significant effect on regulating PDR (P< 0.007). Among the different organic C mioties, polysaccharides positively influenced PDR (P< 0.003) while phenolics had negative effect (P < 0.03). Labile organic C as measured by aerobically mineralizable C was positively correlated with polysaccharides and carboxylic C. Further, characterization of humic acids (HA) in these wetland soils showed that FM HA had greater aromaticity whereas FS HA contained more aliphatic C. Increasing salinity tended to cause an increase in crystalline nature of aliphatics and guaicyl structural units in HA, suggesting more resistant HA formation.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04152009-151049
Date20 April 2009
CreatorsDodla, Syam Kumar
ContributorsOmowumi Iledare, Robert L. Cook, Gary Breitenbeck, Ronald D. DeLaune, Jim J. Wang
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-04152009-151049/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0099 seconds