Long term data generated at four rural stations are compared to determine similarities and differences in aerosol compositions and factors contributing to observed differences at different regions in Turkey. The stations used in this study are located at Mediterranean coast (20 km to the west of Antalya city), Black Sea coast (20 km to the east of Amasra town), Central Anatolia (Ç / ubuk, Ankara) and Northeastern part of the Anatolian Plateau (at Mt. Uludag). Data used in comparisons were generated in previous studies. However, some re-analysis of data were also performed / (1) to improve the similarities of the parameters compared and (2) to be able to apply recently-developed methodologies to data sets.
Data from Mediterranean and Black Sea stations were identical in terms of parameters measured and were suitable for extensive comparison. However, fewer parameters were measured at Ç / ubuk and Uludag stations, which limited the comparisons involving these two stations. Comparison included levels of major ions and elements, short-term and seasonal variations in concentrations, background (baseline) concentrations of elements, flow climatology of regions, correlations between elements, potential source areas affecting regions, and source types affecting chemical composition of particles.
Comparison of levels of measured parameters in four regions showed that there are some differences in concentrations that arise from differences in the local characteristics of the sampling points. For example very high concentrations of elements such as Na and Cl in the Mediterranean region is attributed to closer proximity of the Antalya station to coast and not a general feature of the Mediterranean aerosol. There are also significant regional differences in the concentrations of measured elements and ions as well. Concentrations of anthropogenic elements are very similar at two coastal stations (Antalya and Amasra), but they are approximately a factor of two smaller at the two stations that are located on the Anatolian Plateau. This difference between coastal and high altitude plateau stations, which is common to all anthropogenic species, is attributed to different source regions and transport mechanisms influencing coastal regions and Anatolian Plateau.
Some statistically significant differences were also observed in the temporal variations of elements and ions measured in different stations. The elements with crustal origin showed similar seasonal pattern at all stations, with higher concentrations in summer and lower concentrations in winter. This difference between summer and winter is attributed to suppression of re-suspension of crustal aerosol from wet or ice-covered surface soil in winter. Concentrations of anthropogenic elements, on the other hand, did not show a statistically significant seasonal trend at Amasra, Ç / ubuk and Uludag stations, but they have higher concentrations during summer months at the Antalya station. This difference between Mediterranean aerosol and aerosol at the Central and Northern Turkey is due to influence of more local sources on Ç / ubuk, Amasra and Uludag stations and domination of more distant source in determining aerosol composition at the Mediterranean region. A similar conclusion of strong influence of local sources on chemical composition of particles at the Central Anatolia was also suggested by the comparison of baseline concentrations in each station.
General features in flow climatology (residence times of upper atmospheric air masses) in each region are found to be similar with more frequent flow from W, WNW, NW and NNW wind sectors. Since these are the sectors that include high emitting countries in Eastern and Western Europe and Russia, transport from these sectors are expected to bring pollution from both distant European countries and more local Balkan countries and western parts of Turkey.
Flow climatology in stations showed small, but statistically significant, differences between summer and winter seasons. These variations suggested that the station at the Central Anatolia and Black Sea (Ç / ubuk Amasra and Uludag stations) are affected from sources located at the Western Europe in winter season and from sources located at the Eastern Europe in summer. Mediterranean aerosol, on the other hand, are affected from sources at the Western Europe and do not show any seasonal differences. This variation in flow climatology between summer and winter seasons (and lack of variation at the Mediterranean station) is supported by the seasonal variation (and lack of variation at the Mediterranean station) in SO42-/NO3- ratio measured at the stations.
Potential source contribution function (PSCF) values are calculated for selected elements and ions in each station. Statistical significance of calculated PSCF values is tested using bootstrapping technique. Results showed that specific grids at Russia and at Balkan countries are common source regions affecting concentrations of anthropogenic elements at all four regions in Turkey. However, each station is also affected from specific source regions as well. Aerosol composition at the Anatolian Plateau are affected from sources closer to the sampling points whereas Mediterranean and Black Sea aerosol are affected from source regions that farther away from the receptors. It should be noted that the same conclusion is also reached in comparison of seasonal patterns and baseline concentrations at these stations.
Types of sources affecting aerosol composition at Black Sea, Mediterranean and Central Anatolia are also compared. Source types affecting atmospheric composition in these regions were calculated using positive matrix factorization (PMF). The results showed that aerosol at the Black Sea, Central Anatolia and Mediterranean atmosphere consists of 8, 6 and 7 components, respectively. Two of these components, namely a crustal component and a long-range transport component are common in all three stations. The chemical compositions of these common components are shown to the same within 95% statistical significance interval. Three factors, namely a fertilizer factor, which is highly enriched in NH4+ ion, a sea salt component and an arsenic factor are common in the Mediterranean and Black Sea aerosol but not observed at the Central Anatolia. Other factors found in the regions are specific for that region.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12605844/index.pdf |
Date | 01 January 2005 |
Creators | Dogan, Guray |
Contributors | Tuncel, Gurdal |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0024 seconds