Return to search

A Comparison of MaxEnt Models for Aedes aegypti Species Distribution in South America Utilizing Different Bioclimatic and Environmental Variables

Aedes aegypti is the principal vector for dengue transmission across large areas of the world. Understanding where this critically important vector lives is paramount to preventing the continued expansion of dengue globally. Using 1981-2010 bioclimatic (bioclim) variables, as well as additional environmental variables and elevation data, multiple MaxEnt models were constructed for Ae. aegypti within the South American continent to identify ecologically important variables and areas of persistent high suitability. All models had acceptable AUC scores (> 0.70), indicating accurate model fitting. Annual mean precipitation and temperature were found to be important model variables; however, when added, humidity became the more predictive variable. Elevation had minimal, if any, impact on model construction predictability. When utilizing MaxEnt models, non-traditional climatic variables, i.e., humidity, were significantly more predictive for Ae. aegypti than the standard bioclim variables. Optimal variable selection is critical to understanding current and potential future areas of high transmission risk.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-5985
Date01 August 2024
CreatorsBeer, Matthew
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsCopyright by the authors.

Page generated in 0.0021 seconds