Return to search

Groundwater-Surface Water Interaction in the Kern River| Estimates of Baseflow from Dissolved Radon Analysis and Hydrograph Separation Techniques

<p> Geochemical mixing methods utilizing <sup>222</sup>Rn and chloride and statistical hydrograph separation techniques were carried out in an attempt to understand baseflow dynamics in a section of the Kern River in the Sierra Nevada of Southern California. <sup>222</sup>Rn has become a valuable tool for evaluating groundwater inflow to a river, particularly when groundwater and surface water have similar major ion geochemistry. When using geochemical methods it is important to minimize uncertainty through comparison with separate tracers and techniques, though this is complicated in this setting. Snow melt discharge and regulation of natural river flow cause hydrograph-based techniques to suffer from inaccuracies. Geochemical mixing using major ions and stable isotopes are complicated by the chemical similarity between surface water and groundwater. <sup>222</sup>Rn is a powerful tool to elucidate this relationship in this setting if major uncertainties, like rate of radon degassing and parafluvial and hyporheic radon production can be constrained.</p><p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:10841176
Date01 November 2018
CreatorsDonelan, Jack E.
PublisherCalifornia State University, Long Beach
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0059 seconds