Return to search

Phosphorus removal in a vertical up-flow constructed wetland

Accelerated eutrophication of freshwater ecosystems led by agricultural activities has raised concerns in Southern Quebec and other industrialized locales. Phosphorus being the main culprit, effort has been made to rationalize application and curtail exports of this nutrient with agricultural best management practices. Still, concentrations of phosphorus and nitrogen in typical tile drainage return flow wastewater exceeds the eutrophication-prevention criterion set by the Quebec Ministry of Environment (0.030 mg TP ∙L-1) and the ecosystem safeguard criterion suggested in the literature (1.10 mg TN ∙L-1), with cumulative loads becoming a major contributor to the poor quality of downstream aquatic ecosystems, especially when poorly diluted, as is the case with heavily drained agriculture-dominated watersheds.As a third line of defense in a best management practices package, constructed wetlands (CWs) for the interception of phosphorus are proposed. These wetlands can also mitigate nitrogen and contribute other ancillary benefits. They can be implemented at the mouth of tile drainage or at the confluence of a few outlets, i.e. drainage ditches or first order streams.The main phosphorus removal mechanisms in a CW are adsorption and precipitation with positively charged ions contained in the substrate (e.g., Ca2+, Fe3+, Al3+). Physico-chemical conditions prevailing in the system – especially redox potential – are major factors influencing these reactions. A sub-surface vertical up-flow system seems most appropriate, as it maximizes potential interaction of pollutant-charged water with the substrate constituents, allowing full radial contact and deterring preferential flow. These wetlands also are efficient longer into the cold season, given the underground nature of the flow. An experiment was conducted on McGill's CW research site, situated in Ste-Anne-de-Bellevue, Québec, so as to ascertain the efficiency of a vertical up-flow constructed wetland in treating tile drainage return flow wastewater. During 14 weeks, the capacity to remove the different forms of phosphorus was evaluated, as was the removal of nitrogen compounds. The effluent quality was also compared to the criteria. The wetland had a dimension of 9.15 m2 and the target flow rate was 1 L∙min-1, which is representative of a drainage system serving a 3 ha field in typical Southern Quebec conditions (wetland:watershed ratio: 0.03%; hydraulic loading rate: 0.16 m∙d-1; hydraulic retention time: 2.99 days). The target influent concentrations were 0.300 mg TP ∙L-1, and 10.00 mg TN ∙L-1, which – again – is typical of Southern Quebec tile drainage return flow. The wetland was efficient at removing 84% TP and 86% TN, but the treated wastewater was still above the criteria in 76% and 69% of the cases for TP and TN, respectively.Recommendation is made to supplement the wetland with a dedicated phosphorus-removal substrate so as to further enhance its performance, and to increase the wetland:watershed surface ratio to abate more nitrogen compounds. Community support is key to the implementation of agricultural best management practices. Hence, suggestion is made to include constructed wetlands in the set of initiatives that are financially aided through governmental programs, such as Prime-Vert of Québec. / L'eutrophisation accélérée des écosystèmes aquatiques dû aux activités agricoles donne lieu à des inquiétudes tant dans le Québec méridional que dans d'autres pays industrialisés. Le phosphore étant le principal coupable, des efforts importants ont été consentis à la réduction des exportations de ce nutriment, avec l'instauration de pratiques de gestion agricole optimales. Néanmoins, les concentrations de phosphore et d'azote dans les eaux usées de retour de drainage agricole typiques sont encore au-dessus des critères pour la prévention de l'eutrophisation (0.030 mg TP ∙L-1) et de maintien de la santé des écosystèmes aquatiques (1.10 mg TN ∙L-1), la charge cumulative étant un contributeur majeur à la piètre qualité des écosystèmes aquatiques situés en aval, en particulier lorsque peu diluée, comme c'est le cas par exemple dans les bassins versants à dominante agricole où le drainage est fortement présent. À titre de troisième ligne de défense dans la série de pratiques de gestion agricole optimales, les marais filtrants ciblant l'interception du phosphore sont proposés. Ces marais peuvent également atténuer l'azote et apporter des bénéfices collatéraux. Ils peuvent être installés à l'embouchure de drains agricoles, ou bien à la confluence de plusieurs sorties, comme par exemple dans un fossé agricole ou un cours d'eau d'ordre un. Les deux principaux mécanismes d'enlèvement du phosphore sont l'adsorption et la précipitation avec des ions à charge positive qui sont contenus dans le substrat (e.g., Ca2+, Fe3+, Al3+). Les conditions physico-chimiques qui règnent dans le système – en particulier le potentiel d'oxydo-réduction – sont des facteurs importants pouvant influencer ces réactions. Le système à flux vertical ascendant sous-surfacique est celui qui semble le plus approprié, puisqu'il maximise les interactions entre l'eau chargée de polluants avec les constituants du substrat, permettant un plein contact radial et prévenant les flux préférentiels. Ce type de marais est aussi efficace plus longtemps pendant la saison froide, étant donné la nature sous-surfacique du flux. Une expérience a été menée au site de recherche de l'Université McGill, situé à Sainte-Anne-de-Bellevue, au Québec, afin de vérifier l'efficacité d'un marais à flux vertical ascendant pour traiter les eaux usées de retour de drainage agricole. Pendant quatorze semaines, la capacité d'enlèvement du phosphore sous ses différentes formes a été évaluée, de même que l'enlèvement des composés azotés. La qualité de l'effluent traité a aussi été comparée aux critères de qualité. Le marais avait une surface de 9.15 m2 et le débit cible était de 1 L ∙min-1, ce qui est représentatif d'un système de drainage desservant un champ de 3 ha dans les conditions typiques du Québec méridional (ratio bassin versant:marais filtrant : 0.03%; charge hydraulique : 0.16 m∙d-1; temps de rétention hydraulique : 2.99 jours). Les concentrations cibles dans l'affluent étaient de 0.300 mg TP ∙L-1 et 10.00 mg TN ∙L-1, ce qui – encore là – correspond à un retour de drainage agricole dans les conditions du Québec méridional. L'efficacité du marais est telle qu'un enlèvement de 84% du phosphore total et 86% de l'azote total a été observé, mais l'effluent traité outrepassait encore les critères dans 76% et 69% des cas pour ce qui est du phosphore total et de l'azote total, respectivement. Il est recommandé d'ajouter au marais un substrat dédié à l'enlèvement du phosphore, afin de renforcer la performance, ainsi que d'augmenter le ratio surfacique marais filtrant:bassin versant, afin de diminuer davantage les composés azotés. Le support par la communauté est un élément clé dans l'instauration de pratiques de gestion agricole optimales. Ainsi donc, il est suggéré d'inclure les marais filtrants dans l'ensemble d'initiatives qui sont financièrement appuyées par les programmes gouvernementaux, tels le programme Prime-Vert au Québec.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.119504
Date January 2013
CreatorsDuteau, Michel
ContributorsGrant Clark (Internal/Cosupervisor2), Shiv Prasher (Internal/Supervisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Bioresource Engineering)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
RelationElectronically-submitted theses.

Page generated in 0.0023 seconds