Return to search

Resource Recovery of Coal Bed Methane Formation Water

During the excavation of natural gas, petroleum hydrocarbon-polluted brine water, termed production water, is drawn from the coal bed methane formations (CBMF) along with the natural gas product. The water is drawn out in vast amounts and re-injected into the CBMF. In the Greater Rocky Mountain Region (GRMR) where water supplies are dwindling, the remediation of CBMF production water has become a high priority for maintaining agriculture, residential development and industrial expansion.
The overall objective of this research was to demonstrate in laboratory and field pilot studies the efficacious merging of Immobilized Microbe BioReactor (IMBR) technologies for biodegradation/mineralization of organics and Reverse Osmosis (RO) technologies as a cost-efficient and effective method for the desalination of CBMF water. Laboratory studies indicated that organic constituents of concern could be reduced at a kinetic rate of 1,230 ± 399 mg/L/h at the EnCana site and 140 ± 120 mg/L/h based on ConocoPhillips drill pit analysis. Salinities in the residual brine were only reduced from 220 ppm to 120 ppm total chlorides with the RO system working at a continuous flow rate of 7.6 ± 0.04 L/min. Chemical oxygen demand (COD) was reduced at a rate of 2,580 ± 1,940 mg/L/h. A field pilot established in Parachute, CO consisted of a 836 L IMBR operating at a feed rate of 6.50 ± 1.84 L/min. Samples were received from one collective drill pit at the EnCana Oil and Gas Company site in Parachute, CO and five separate drill pits from the ConocoPhillips fields in the San Juan Basin near Farmington, NM.
Acceptability of the production water treatment system proposed in this project was analyzed based on percent removal of Total Chromatographic Hydrocarbons (TCH) and salinity. In both the EnCana and ConocoPhillips pilot studies, the proposed treatment yielded a significant difference (P < 0.05) in TCH concentrations between the influent and effluent samples. Desalination of production water using a RO system was analyzed in the ConocoPhillips pilot study and did not show a significant difference (P > 0.05) between influent and effluent water samples.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11032006-132926
Date08 November 2006
CreatorsBishop, Catherine Elizabeth
ContributorsPaul Templet, Ed Overton, Ralph J. Portier
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11032006-132926/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds