A field survey was undertaken in Central Kalimantan, Indonesia (Borneo) to assess the extent and practices of Artisanal and Small-scale Gold Mining (ASGM), and to measure sediment and mercury flows in the provinces’ rivers. More than forty mining operations were visited in six of the provinces largest river basins during June, July and August of 2008. Based on the survey results, this thesis estimates that 43,000 small-scale gold miners in Central Kalimantan produced 13.3 tonnes of gold in 2008 (426,000 troy ounces - ozt) worth approximately 362 million CAD (based on 2008 international gold price of 850 CAD/ozt). Mercury use was ubiquitous for leaching gold from ores in the province. Approximately 65.3 tonnes was used for this purpose in 2008, with the majority of consumption- 80% by whole-ore amalgamation operations exploiting hard-rock deposits, but producing only 13% of the gold. These estimates have been interpolated using (i) measurements and detailed observations at more than forty ASGM operations surveyed in five different regencies; (ii) numerous interviews with miners, gold shops owners and officials across these regencies; and (iii) mapping of ASGM operations using satellite imagery.
Hydraulic mining methods mobilize enormous volumes of sediment and native sediment-bound mercury. Sediment and mercury fluxes associated with ASGM activities were estimated based on a river sediment sampling campaign carried out in conjunction with the ASGM survey, and on subsequent modelling of river sediment transport. On streams and tributaries, mining activities increased sediment transport by factors between 100 and 1500, resulting in a net doubling of sediment loads on large first order river channels, on which the effects of mining are diluted in space and time by channels without mining. Particulate mercury flux sampled on six of Central Kalimantan’s largest river channels averaged 60ng/L ±33%, a high figure relative to most global rivers, despite average suspended sediment concentrations of only 75mg/L ±58%. Based on a hydrological and sediment transport model, 19.4 tonnes of mercury (±30%) transits these river systems annually, dominantly transported as suspended sediment load (95%), with the remaining 5% transported as bedload.
Acute mercury exposure by inhalation during the burning of mercury-gold amalgam represents an important health concern at ASGM camps and gold shops. In relation to mercury, sector improvements should focus on eradicating whole ore amalgamation, and open burning of amalgam. Eliminating whole ore amalgamation requires technological improvements at the gold liberation (crushing and milling) and concentration stages of ore processing. Elimination of open-air burning can be achieved through education, and the use of retorts, fumehoods, and mercury re-activation cells– each of these basic technologies provide mercury users with economic incentives by reducing mercury consumption. / Graduate
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/3711 |
Date | 08 December 2011 |
Creators | Stapper, Daniel |
Contributors | Telmer, Kevin |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0022 seconds