Return to search

Fate of Current-use Pesticides in the Canadian Atmosphere

Across Canada, and around the world, very large amounts of pesticides are produced and applied to agricultural crops each year. Although pesticide usage is declining, they are still a necessary part of industrial agriculture. Numerous pesticides have been quantified in the atmosphere, at high levels near regions of use and at lower, but still significant levels in remote regions. Some of the most persistent pesticides have been banned, but others continue to be used despite their persistence and potential for long-range transport (LRT). We have applied and refined an XAD-2 resin-based passive air sampler (PAS) to study the concentrations of pesticides in the atmosphere. A set of laboratory experiments measured the equilibria sorption coefficients for chemicals on XAD-2 resin, allowing the determination of a new predictive equation for equilibria sorption coefficients, and thus interpretation of the range of applicability of both XAD-based PAS and active air samplers (AAS). A set of field experiments were performed to compare the data obtained by both PAS and AAS, and to study the temporal trends of a wide range of pesticides in an agricultural area of southern Ontario. Because it is now apparent that XAD-PAS sampling rates can vary between compounds and with temperature, we also determined new compound-specific sampling rates for pesticides in the XAD-PAS. The XAD-PAS were deployed in two transects across Canada, one from the Great Lakes region to the Canadian Arctic, and one across southern British Columbia in four different mountain regions and at different elevations. The air concentrations of current-use pesticides were correlated with regions of their use in both transects. The variation of air concentration with elevation was correlated with local, ground-level sources in British Columbia. The LRT of pesticides was determined from the north-south transect, and correlated to their atmospheric half-lives. Historic-use pesticides such as hexachlorobenzene and hexachlorocyclohexane were found to have relatively uniform distributions in the Canadian atmosphere, while further evidence of α-hexachlorocyclohexane evaporation from oceans was observed in both transects.

Identiferoai:union.ndltd.org:TORONTO/oai:tspace.library.utoronto.ca:1807/30042
Date14 November 2011
CreatorsHayward, Stephen
ContributorsWania, Frank
Source SetsUniversity of Toronto
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0017 seconds