Return to search

Effects of Deepwater Horizon Oil on the Growth Rates and Pigment Composition of Phytoplankton Isolated From Grand Isle, LA

This research focused on the effects of un-weathered Macondo crude oil on the growth rates and pigment ratios of phytoplankton isolated from Grand Isle, LA. The experiments involved incubating nutrient-enriched artificial media containing a range of oil concentrations up to 19.2 ppm with small aliquots of coastal water from Grand Isle and measuring the growth rates of the phytoplankton during the subsequent 1014 days and the pigment ratios of the phytoplankton at the end of log-phase growth to determine whether the crude oil affected the growth rate of the phytoplankton and their composition in terms of pigment ratios. Pigment analysis revealed that the cultures consisted almost entirely of diatoms. Results showed that there was a significant effect on diatom growth rates from the concentration of crude oil, the month, and the interaction between oil concentrations and months. In March, April, and May, growth rates at oil concentrations from 0.1 to 0.6 ppm were about 10% higher than controls. At higher oil concentrations there was a negative correlation between oil concentrations and growth rates. The ratio of fucoxanthin to chlorophyll a was positively correlated with oil concentrations in February, March and April, the implication being that the size of the diatom photosynthetic units changed in response to the oil. There was no significant correlation between growth rates and oil concentrations in July and August, nor was there any correlation between pigment ratios and oil concentrations. The July and August phytoplankton grew roughly twice as fast as the March, and April control cultures, although the growth conditions were identical. Analysis with a mathematical model of phytoplankton growth suggested that in the presence of oil, there was a transfer of resources within the March, April, and May phytoplankton, the result being an increase in the size of their photosynthetic units and a decrease in the number of photosynthetic units in response to the presence of oil. The principal antenna pigment was fucoxanthin. The phytoplankton isolated in July and August, in contrast, appeared to be completely unaffected by the presence of oil up to a concentration of 19.2ppm.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-01192014-205944
Date23 January 2014
CreatorsLi, Jie
ContributorsLaws, Edward, Portier, Ralph, Hou, Aixin, Li, Bin
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-01192014-205944/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds