Return to search

Use of novel sensors to assess human exposure to airborne pollutants and its effects on cognitive performance

Exposure to air pollution can cause adverse health effects, may also adversely affect the central nervous system and affect cognitive performance. Epidemiological studies depend on central site monitors as surrogates to assess personal exposure to air pollution, which can be inaccurate because they do not assess personal exposure in a variety of activities and microenvironments. This thesis aims to assess the level of misclassification in data from central site monitors by using portable modern sensors with high temporal resolution to characterize personal inhaled doses of BC, PM2.5, and UFP, and compare the measurements with surrogate exposure metrics. It also seeks to identify contributing activities and sources associated with the highest concentrations of the three pollutants, and to determine the contribution of these activities and microenvironments to personal exposure, and to study the impact of short-term exposure to air pollution on cognitive function. The first finding is that central site monitors are not a good surrogate for personal exposure. Secondly, travelling in vehicles is linked to the highest concentrations of the three pollutants, while other outdoors activities and outdoors commuting are linked to the highest concentrations of BC and PM2.5, cooking is linked to the highest concentrations of UFP, and activities and time spent indoors are the highest contributors to personal exposure. Thirdly, the results provide strong evidence that short-term exposure to PM2.5 from candle burning and commuting has an adverse effect on cognitive performance.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:742665
Date January 2018
CreatorsShehab, Maryam
PublisherUniversity of Birmingham
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.bham.ac.uk//id/eprint/8161/

Page generated in 0.0016 seconds