Return to search

Determination of Predominant Species of Oil-degrading Bacteria in the Oiled Marsh Sediment in Barataria Bay, Louisiana

The effects of the Deepwater Horizon (DWH) oil spill on the bacterial communities in coastal sediments are relatively known but few studies have been published evaluating the impacts of the spill on oil-degrading bacterial populations in the salt marsh sediments of Barataria Bay, Louisiana. The aims of this study were to determine the effects of the oil spill on the microbial community in Barataria Bay, Louisiana through the determination of predominate species of oil-degrading bacteria in marsh sediments, and to determine how well certain bacterial isolates can degrade crude oil in the region by taking samples from three areas of different oiling categories in April 2012, October 2012 and April 2013, approximately 24, 30, and 36 months after the initial oiling event. Hydrocarbon-degrading bacteria were isolated from the sediment samples using Bushnell Haas (BH) agar enriched with 1% Light Louisiana Sweet (LLS) crude oil. The isolates were subsequently purified on LB agar plates, their genomic DNAs extracted, and 16S rRNA genes amplified by polymerase chain reaction (PCR). The PCR products of 16S rRNA were then sequenced and taxonomically classified based on similarity to known sequences in BLAST database. A total of 460 isolates were obtained, representing 84 species from 45 genera in 6 phyla. Oil degradability of 10 bacterial isolates, designated to Staphylococcus xylosus, Acinetobacter calcoaetious, Pseudomonas stutzeri, Bacillus pumilus, Micrococcus luteus, Rhodococcus equi, Microbacterium esteratomaticum, Vibrio sp., Pseudomonas mendocina, and Agromyces aurantiacus, respectively, was tested in LB broth with 1% LLS crude oil. Their growth and metabolic properties in terms of optical density at 600 nm and pH in culture medium were monitored for 6 days. Among these isolates, Micrococcus luteus, Vibrio sp., Bacillus pumilus, Rhodococcus equi and Microbacterium esteratomaticum appeared to have the greatest ability to degrade LLS crude oil; their growth rates were estimated to be 0.038, 0.037, 0.031, 0.029 and 0.037 per hour, respectively. All isolates showed a decrease in pH in their culture medium during their growth, with M. esteratomaticum having the lowest pH of 5.29 and R. equi having the highest pH of 6.50 at 96 hours of incubation. A decrease in pH in the cultured media is indicative of an accumulation of acid from oxidation reactions carried out by oil-degrading bacteria. The present study provided a comprehensive list of indigenous oil-degrading bacteria in Louisiana marsh sediment, which is critical in developing bioremediation strategies.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04142014-105341
Date07 May 2014
CreatorsNavarre, Lauren Nicole
ContributorsLaws, Ed, Wilson, Vincent, Hou, Aixin
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-04142014-105341/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0159 seconds