Fatty Acid Amide Hydrolase (FAAH), a serine hydrolase family protein, hydrolyzes N-acylethanolamines (NAEs) by cleaving the amide bond linking the acyl group with ethanolamine to produce free fatty acids. Highly conserved ‘Amidase Signature (AS)’ sequence rich in serine, glycine and alanine residues characterize the protein. FAAH plays role in various physiological processes by regulating NAE levels, such as seedling growth, defense response. Understanding of the role of NAEs and FAAH has been however, limited to model plant Arabidopsis. Here, with interest to understand the role of FAAH in modulating NAE composition, tomato was chosen as a model system. Recently, SlFAAH1, an ortholog of AtFAAH1 was identified in tomato and was successfully expressed in prokaryotic expression system. Protein assay with lysate of cells expressing recombinant putative SlFAAH1 showed the ability to hydrolyze a polyunsaturated NAE (NAE20:4). Currently, additional assays are being carried out to determine optimal pH, temp, substrate specificity and associated enzyme kinetics. In parallel, the effect of exogenous NAEs on SlFAAH1 expression levels and during seedling development is being evaluated. Together, this study is expected to not only characterize a protein in tomato but also determine its role in mediating NAE metabolism and seedling development, and further allows for comparison with Arabidopsis and mammalian FAAH to determine its functional conservation.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:asrf-1050 |
Date | 04 April 2018 |
Creators | Shrestha, Sujan, Kilaru, Aruna |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Appalachian Student Research Forum |
Page generated in 0.0022 seconds