Kallikrein-related peptidases (KLKs) constitute a highly conserved serine protease family. Based on in vitro experiments, KLKs are predicted to play an important role in a number of physiolog- ical and pathophysiological processes. However, their role in vivo remains not fully understood, partially due to a lack of suitable animal models. In this work, we aim to prepare a KLK5 and KLK14 double-deficient mouse model. Both KLK5 and KLK14 were proposed to be involved in epidermal proteolytic networks critical for maintaining skin homeostasis. However, both KLK5 and KLK14 single-deficient mouse models show minimal or no phenotype, likely due to similar substrate specificity resulting in functional compensation. Double-deficient mice cannot be easily obtained by crossing due to localization of the Klk5 and Klk14 genes within the same locus on chromosome 7. We report that KLK5 and KLK14 double-deficient mice were success- fully generated, mediated by transcription activator-like effector nucleases (TALENs) targeting Klk14 by microinjection of TALEN mRNA into KLK5-deficient zygotes. Furthermore, we show that KLK5 and KLK14 double-deficient mice are viable and fertile. We believe that these novel mouse models may serve as a useful experimental tool to study KLK5 and KLK14 in vivo.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:343049 |
Date | January 2016 |
Creators | Hanečková, Radmila |
Contributors | Sedláček, Radislav, Fulková, Helena |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0013 seconds