Return to search

Characterisation of androgen receptor function in the male reproductive system through conditional gene targeting

Androgen receptor (AR) signalling is essential for the development and function of the male reproductive system. Conditional gene ablation using the Cre-loxP system has previously assisted in the elucidation of the role of AR in different cell types. The aim of this study was to examine the effects of the ablation of AR in previously untargeted cell types, with the hypothesis that this will have significant and novel effects on reproductive development and function that have not been previously documented by current models of androgen disruption. In these studies, three Cre recombinase lines were empirically validated for action in the male reproductive system, before being used to ablate AR and the phenotypes of the resulting lines were characterised. Endothelial-specific receptor tyrosine kinase (Tie2)-Cre was shown to target the vascular and endothelial cells of the testis, and used to ablate AR in these cells. The testes of the resulting Tie2-ARKO line were morphologically similar to controls, with normal spermatogenesis and mature spermatozoa present in the cauda epididymis. Aquaporin 2 (Aqp2)-Cre was shown to target the post-meiotic germ cells of the testis, and was used to ablate AR in these cells. The testes of the resulting Aqp2-ARKO line were morphologically similar to controls, with normal spermatogenesis and mature spermatozoa present in the cauda epididymis. It was concluded that the Ar gene was dispensable in the endothelial cells and post-meiotic germ cells of the testis for normal spermatogenesis. Forkhead box protein G1 (FoxG1)-Cre was shown to target the caput epididymal epithelium and pituitary, and used to ablate AR in these cells. d100 FoxG1-ARKO mice had a severe testicular phenotype, with sloughing of the seminiferous epithelium, atrophy of some seminiferous tubules and distension of the rete testis with spermatozoa. Despite the severe testis phenotype, ablation in the testis was incomplete and restricted to a small percentage of Leydig cells, with no ablation in Sertoli cells. Ablation of AR in the embryonic pituitary did not cause adult serum testosterone or LH concentrations to change, nor did it cause changes in other pituitary hormone transcripts. Mosaic ablation of AR in the caput epididymal epithelium was shown to impair epididymal development, with failure of initial segment (segment I) development and a significant decrease in epithelial cell height and lumen diameter in the remaining proximal caput epididymis (segment II). Dysfunction of the caput epididymis resulted in the failure of spermatozoa to transit the efferent ducts into the epididymis correctly: instead they were found to stall in the efferent ducts and produce a block. The testicular phenotype could be explained as the result of fluid backpressure effects resulting from the efferent duct block. Consequently, low concentration of spermatozoa in the cauda epididymis resulted in infertility in the FoxG1-ARKO, which represents a new model of obstructive azoospermia.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:563546
Date January 2011
CreatorsO'Hara, Laura
ContributorsSmith, Lee. ; Saunders, Philippa
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/5710

Page generated in 0.0024 seconds