Return to search

An early Permian subtropical carbonate system : sedimentology and diagenesis of the Raanes and Great Bear Cape formations, Sverdrup Basin, Arctic Canada

The Early Permian (Sakmarian to Kungarian) Raanes and Great Bear Cape formations of the Sverdrup Basin were deposited at a time of ocean cooling, and are interpreted to reflect a subtropical setting. Pelmatozoans, bryozoans, and brachiopods are the predominant fossils throughout the extent of these two units, with local occurrences of large fusulinids and colonial corals. This mixed photozoan-heterozoan assemblage is similar to the sediments of modern-day subtropical settings. Although the Raanes and Great Bear Cape have warm-water rocks below, and cool-water rocks above, the fossil assemblages in these formations were dependent upon changes in oceanography and sea-level. Three distinct phases, as determined by water depth and temperature, occur. First, the rocks of the Raanes and lower Great Bear Cape are deep water and heterozoan in nature. Second, the middle Great Bear Cape limestones record a time of shallow, subtropical waters. Finally, the upper Great Bear Cape is shallow-water, but cooling had progressed to a point that precluded the occurrence of any photozoan components, regardless of depth. Due to evolutionary changes in other subtropical biota, the most reliable fossil indicator of subtropical deposition in the rock record is large benthic foraminifera (including fusulinids) in an otherwise heterozoan assemblage. The identification of limestones representative of these conditions should, therefore, be identifiable at times in the Earth’s history when large benthic foraminifera lived in shallow marine environments.
The Great Bear Cape Formation subtropical facies underwent post-depositional changes that are manifest as calcite cements, iron-oxides, glauconite, and silica. Isopachous calcite cements precipitated in intraskeletal pore spaces as well as around the outside of grains. Glauconite, which is an authigenic marine mineral, has been oxidized to iron oxide, and both minerals post-date, or are included within, the isopachous cements. The isopachous cements must, therefore, have also formed in the marine environment. Where they are precipitated around pelmatozoan fragments, these originally high magnesium calcite cements have been neomorphosed to single-crystal epitaxial cements at the same time as mineral stabilization of the biofragments. These cements then seeded the growth of further epitaxial cement in the meteoric environment. / Thesis (Master, Geological Sciences & Geological Engineering) -- Queen's University, 2007-08-21 10:58:18.958

  1. http://hdl.handle.net/1974/651
Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/651
Date29 August 2007
CreatorsBensing, Joel P.
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format2159817 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0023 seconds