Prostate cancer is the fourth most frequent cause of cancer-related deaths in men worldwide. One of current successful approaches to treat prostate cancer is radical prostatectomy followed by radiotherapy. However, this treatment is not 100% successful, as 53% patients develop secondary tumors. Our hypothesis is, that ionizing radiation itself contributes to the development of metastases by inducing changes in cell phenotype, particularly in terms of epithelial-to-mesenchymal transition and stemness. To test this hypothesis, we irradiated the cells of metastatic prostate cancer cell line DU145 by fractionated radiation 2 x 10 Gy and we compared the expression of selected epithelial, mesenchymal and stem-cell markers prior to and after irradiation. Besides we focused on a subpopulation of so called floating cells which arise during irradiation. These cells can survive the radiation treatment and after some time they are able to reattach and give rise to readherent population. We wanted to asses what is the cell cycle profile of these cells and whether and how fast they proliferate. In this thesis we have shown that radiation causes only minor changes in epithelial/mesenchymal and stem-like character of adherent fraction of the DU145 cell line. However, we have also described that small population of...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:323641 |
Date | January 2013 |
Creators | Imrichová, Terezie |
Contributors | Hodný, Zdeněk, Rösel, Daniel |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds