Return to search

Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par équations intégrales

Cette thèse s'articule autour de deux thématiques : les méthodes numériques pour la propagation d'ondes acoustiques sous écoulement et les méthodes de réduction de modèles. Dans la première thématique, nous développons une méthode de couplage d'éléments finis et d'éléments de frontière pour résoudre l'équation d'Helmholtz convectée, lorsque l'écoulement est uniforme à l'extérieur d'un domaine borné. En particulier, nous proposons une formulation bien posée à toutes les fréquences de la source. Dans la deuxième thématique, nous proposons une solution au problème classique d'accumulation d'arrondis machine qui survient en calculant l'estimateur d'erreur a posteriori dans la méthode des bases réduites. Par ailleurs, nous proposons une méthode non intrusive pour calculer une approximation sous forme séparée des systèmes linéaires résultant de l'approximation en dimension finie de problèmes aux limites dépendant d'un ou plusieurs paramètres

Identiferoai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00961528
Date05 December 2013
CreatorsCasenave, Fabien, Casenave, Fabien
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0021 seconds