Return to search

Quelques problèmes relatifs à la dynamique des points vortex dans les équations d'Euler et de Ginzburg-Landau complexe

Les problèmes étudiés dans cette thèse ont trait à la dynamique des points vortex dans deux équations pour les fluides ou superfluides bidimensionnels. La première partie est dévolue à l'équation d'Euler incompressible. Nous y analysons le système mixte Euler-points vortex, introduit par Marchioro et Pulvirenti, qui décrit l'évolution d'un tourbillon obtenu par superposition de points vortex et d'une composante plus régulière. Nous examinons diverses problématiques telles que le lien entre les points de vue lagrangien et eulérien, l'unicité, l'existence et l'expansion du support du tourbillon. La seconde partie de la thèse est consacrée à une équation de Ginzburg-Landau complexe obtenue en ajoutant un terme de dissipation à l'équation de Gross-Pitaevskii. Après avoir examiné le problème de Cauchy dans l'espace d'énergie correspondant, nous étudions la dynamique des points vortex dans le cadre de données très bien préparées. Dans un dernier temps, nous considérons un autre régime asymptotique, sans vortex, dans lequel les solutions sont des perturbations de champs constants de module égal à un. Une dynamique de type ondes amorties pour la perturbation est mise en évidence.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00444820
Date04 December 2009
CreatorsMiot, Evelyne
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds