The dissertation thesis consists of two thematic parts. The first part, i.e. chapters 2, 3 and 4, contains results concerning the topic of a new book of the supervisor and coauthors V. Kanovei and M. Sabok "Canonical Ramsey Theory on Polish Spaces". In Chapter 2, there is proved a canonization of all equivalence relations Borel reducible to equivalences definable by analytic P-ideals for the Silver ideal. Moreover, it investigates and classifies sube- quivalences of the equivalence relation E0. In Chapter 3, there is proved a canonization of all equivalence relations Borel reducible to equivalences de- finable by Fσ P-ideals for the Laver ideal and in Chapter 4, we prove the canonization for all analytic equivalence relations for the ideal derived from the Carlson-Simpson (Dual Ramsey) theorem. The second part, consisting of Chapter 5, deals with the existence of universal and ultrahomogeneous Polish metric structures. For instance, we construct a universal Polish metric space which is moreover equipped with countably many closed relations or with a Lipschitz function to an arbitrarily chosen Polish metric space. This work can be considered as an extension of the result of P. Urysohn who constructed a universal and ultrahomogeneous Polish metric space.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:329275 |
Date | January 2013 |
Creators | Doucha, Michal |
Contributors | Zapletal, Jindřich, Zelený, Miroslav, Kubiš, Wieslaw |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0018 seconds