The construction of characteristic classes via the curvature form of a
connection is one motivation for the refinement of integral cohomology
by de Rham cocycles -- known as differential cohomology. We will discuss
the analog in the case of a group action on the manifold: We will show
the compatibility of the equivariant characteristic class in integral
Borel cohomology with the equivariant characteristic form in the Cartan
model. Motivated by this understanding of characteristic forms, we
define equivariant differential cohomology as a refinement of
equivariant integral cohomology by Cartan cocycles.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:13825 |
Date | 28 October 2015 |
Creators | Kübel, Andreas |
Contributors | Thom, Andreas, Schick, Thomas, Universität Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0146 seconds