La thèse porte sur l’analyse d’erreur a posteriori pour la résolution numérique de l’équation linéaire des ondes , discrétisée en temps par le schéma de Newmark et en espace par la méthode des éléments finis. Nous adoptons un choix particulier de paramètres pour le schéma de Newmark, notamment β = 1/4, γ = 1/2, qui assure que la méthode est conservative en énergie et d’ordre deux en temps. L’estimation d’erreur a posteriori, d’un ordre optimal en temps et en espace, est élaborée à partir de la discrétisation complète. L’erreur est mesurée dans une norme qui découle naturellement de la physique: H1 en espace et Linf en temps. Nous proposons d’abord un estimateur dit «à 3 points» qui fait intervenir la solution discrète en 3 points successifs du temps à chaque pas de temps. Cet estimateur fait appel à une approximation du Laplacien de la solution discrète qui doit être calculée à chaque pas de temps, en résolvant un problème auxiliaire d'éléments finis. Nous proposons ensuite un estimateur d’erreur alternatif qui permet d’éviter ces calculs supplémentaires: l’estimateur dit «à 5 points» puisqu’il met en jeu le schéma des différences finies d’ordre 4, qui fait intervenir la solution discrète en 5 points successifs du temps à chaque pas de temps. Nous démontrons que nos estimateurs en temps sont d’ordre optimal pour des solutions suffisamment lisses, sur des maillages quasi-uniformes en espace et uniformes en temps, en supposant que les conditions initiales soient discrétisées à l’aide de la projection elliptique. La trouvaille la plus intéressante de cette analyse est le rôle capitale de cette discrétisation : des discrétisations standards pour les conditions initiales, telles que l’interpolation nodale, peuvent être néfastes pour les estimateurs d’erreur en détruisant leur ordre de convergence, bien qu’elles fournissent des solutions numériques tout à fait acceptables. Des expériences numériques prouvent que nos estimateurs d’erreur sont d’ordre optimal en temps comme en espace, même dans les situations non couvertes par la théorie. En outre, notre analyse a posteriori s’étend au schéma de Newmark d’ordre deux plus général (γ = 1/2). Nous présentons des comparaisons numériques entre notre estimateur à 3 points généralisé et l’estimateur sur des grilles décalées, proposé par Georgoulis et al. Finalement, nous implémentons un algorithme adaptatif en temps et en espace basé sur notre estimateur d’erreur a posteriori à 3 points. Nous concluons par des expériences numériques qui montrent l’efficacité de l’algorithme adaptatif et révèlent l’importance de l’interpolation appropriée de la solution numérique d’un maillage à un autre, surtout vis à vis de l’optimalité de l’estimation d’erreur en temps. / This thesis focuses on the a posteriori error analysis for the linear second-order wave equation discretized by the second order Newmark scheme in time and the finite element method in space. We adopt the particular choice for the parameters in the Newmark scheme, namely β = 1/4, γ = 1/2, since it provides a conservative method with respect to the energy norm. We derive a posteriori error estimates of optimal order in time and space for the fully discrete wave equation. The error is measured in a physically natural norm: H1 in space, Linf in time. Numerical experiments demonstrate that our error estimators are of optimal order in space and time. The resulting estimator in time is referred to as the 3-point estimator since it contains the discrete solution at 3 points in time. The 3-point time error estimator contains the Laplacian of the discrete solution which should be computed via auxiliary finite element problems at each time step. We propose an alternative time error estimator that avoids these additional computations. The resulting estimator is referred to as the 5-point estimator since it contains the fourth order finite differences in time and thus involves the discrete solution at 5 points in time at each time step. We prove that our time estimators are of optimal order at least on sufficiently smooth solutions, quasi-uniform meshes in space and uniform meshes in time. The most interesting finding of this analysis is the crucial importance of the way in which the initial conditions are discretized: a straightforward discretization, such as the nodal interpolation, may ruin the error estimators while providing quite acceptable numerical solution. We also extend the a posteriori error analysis to the general second order Newmark scheme (γ = 1/2) and present numerical comparasion between the general 3-point time error estimator and the staggered grid error estimator proposed by Georgoulis et al. In addition, using obtained a posteriori error bounds, we implement an efficient adaptive algorithm in space and time. We conclude with numerical experiments that show that the manner of interpolation of the numerical solution from one mesh to another plays an important role for optimal behavior of the time error estimator and thus of the whole adaptive algorithm.
Identifer | oai:union.ndltd.org:theses.fr/2018UBFCD024 |
Date | 22 February 2018 |
Creators | Gorynina, Olga |
Contributors | Bourgogne Franche-Comté, Lozinski, Alexei, Picasso, Marco |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds