Return to search

Characterisation of the zinc fingers of Erythroid Kruppel-Like Factor

Doctor of Philosophy (PhD) / Gene expression is known to be regulated at the level of transcription. Recently, however, there has been a growing realisation of the importance of gene regulation at the post-transcriptional level, namely at the level of pre-mRNA processing (5’ capping, splicing and polyadenylation), nuclear export, mRNA localisation and translation. Erythroid krüppel-like factor (Eklf) is the founding member of the Krüppel-like factor (Klf) family of transcription factors and plays an important role in erythropoiesis. In addition to its nuclear presence, Eklf was recently found to localise to the cytoplasm and this observation prompted us to examine whether this protein has a role as an RNA-binding protein, in addition to its well-characterised DNA-binding function. In this thesis we demonstrate that Eklf displays RNA-binding activity in an in vitro and in vivo context through the use of its classical zinc finger (ZF) domains. Furthermore, using two independent in vitro assays, we show that Eklf has a preference for A and U RNA homoribopolymers. These results represent the first description of RNA-binding by a member of the Klf family. We developed a dominant negative mutant of Eklf by expressing its ZF region in murine erythroleukaemia (MEL) cells. We used this to investigate the importance of this protein in haematopoietic lineage decisions by examining its effect on the multipotent K562 cell line. We provide evidence that Eklf appears to be critical not only for the promotion of erythropoiesis, but also for the inhibition of megakaryopoiesis.

Identiferoai:union.ndltd.org:ADTP/206988
Date January 2008
CreatorsHallal, Samantha
PublisherUniversity of Sydney., Medicine
Source SetsAustraliasian Digital Theses Program
Detected LanguageEnglish
RightsThe author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html

Page generated in 0.0014 seconds