Return to search

Structure-Function Analysis of the EsaR N-terminal Domain

The LuxR protein family is a class of quorum-sensing regulated bacterial transcription factors that alter gene expression as a function of ligand detection. This coincides with a high population density and/or a low rate of signal ligand diffusion. The majority of LuxR proteins are activated only in the presence of the signal ligand, an acyl-homoserine lactone (AHL). EsaR, from the corn pathogen Pantoea stewartii, represents a subset of LuxR homologues that are active in the absence of AHL and deactivated by its presence. The mechanism by which EsaR responds to AHL in a manner opposite to that of the majority of LuxR homologues remains elusive. Unlike the majority of LuxR homologues, which require AHL for purification, EsaR can be purified and biochemically investigated in the absence and presence of AHL. This work sought to answer questions regarding the structure-function relationship of the LuxR homologue, EsaR.

Fluorescence anisotropy was used to determine the relative DNA-binding affinity of wild type EsaR and three AHL-independent EsaR variants in the presence and absence of AHL. This enabled for quantitative analysis of the relative binding affinities of these AHL-independent variants for the EsaR binding site, the esa box. The results demonstrate that one AHL-independent EsaR variant has a slightly higher affinity for the esa box in the presence, rather than the absence of AHL. The affinity of the other two for the DNA is not impacted by AHL, potentially due to an inability to transduce the signal of ligand detection to the DNA binding domain.

Constructs containing only the EsaR N-terminal domain (NTD) were also developed. These constructs circumvented solubility issues associated with the full-length protein, allowing for additional biochemical analysis. It was determined that the EsaR NTD alone is sufficient for multimerization and ligand binding. Additionally, preliminary X-ray crystallography efforts have established some of the early parameters required to solve the crystal structure of the EsaR ligand binding domain in both the presence and absence of AHL. If pursued, these structures would be the first solved of a LuxR homologue ligand binding domain in both the presence and absence of the native AHL, potentially demonstrating the conformational change that occurs as a result of ligand binding. Collectively, these findings have established some of the groundwork required to resolve the question of what sort of conformational changes occur in EsaR as a result of ligand binding. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/46190
Date24 January 2012
CreatorsGeissinger, Jared Scott
ContributorsBiology, Stevens, Ann M., Popham, David L., Schubot, Florian D., Hernick, Marcy
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationGeissinger_JS_T_2011

Page generated in 0.0023 seconds