Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-11-01T23:18:47Z
No. of bitstreams: 1
WyaraVanesaMouraESilva_DISSERT.pdf: 1410520 bytes, checksum: a24a9a6a8aa9099ef7e4b5c92d32ae7c (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-11-16T22:02:47Z (GMT) No. of bitstreams: 1
WyaraVanesaMouraESilva_DISSERT.pdf: 1410520 bytes, checksum: a24a9a6a8aa9099ef7e4b5c92d32ae7c (MD5) / Made available in DSpace on 2017-11-16T22:02:47Z (GMT). No. of bitstreams: 1
WyaraVanesaMouraESilva_DISSERT.pdf: 1410520 bytes, checksum: a24a9a6a8aa9099ef7e4b5c92d32ae7c (MD5)
Previous issue date: 2017-08-28 / A an?lise de valores extremos tem sido amplamente utilizada a fim de avaliar e prever cat?strofes ambientais ocasionadas devido a mudan?as clim?ticas ocorridas ao longo dos anos. Al?m da ?rea ambiental, outras ?reas comuns de aplica??es destas an?lises s?o finan?as, atu?ria, entre outras. Desta maneira, o presente trabalho consiste na estima??o de par?metros e n?veis de retornos esperados, considerando a distribui??o de valores extremos para as r-maiores estat?sticas de ordem. Tais estima??es ser?o avaliadas em s?ries que possuem pontos de mudan?a no regime, ou seja, ser? proposto um modelo para detec??o de pontos de mudan?a numa s?rie, aplicado a distribui??o das r-maiores estat?sticas de ordem (GEVr). Ser? abordado o caso em que a s?rie possui k pontos de mudan?a, na qual a s?rie possui k+1 diferentes regimes, e ser? modelado cada regime pela distribui??o GEVr. A infer?ncia usada no modelo ? baseada numa abordagem bayesiana, em que ambos o par?metros da GEVr para cada regime, e os pontos de mudan?a s?o considerados como par?metros desconhecidos a serem estimados. Al?m de uma avalia??o quanto ao crit?rio de escolha do r ?timo para a distrubui??o dos dados. A estima??o ? realizada pelo M?todo de Monte Carlo via Cadeias de Markov (MCMC) com o uso da t?cnica do algoritmo de Metropolis-Hastings. Inicialmente, foram realizadas apenas simula??es, para avalia??o de s?ries com um e dois pontos de mudan?a, em que obteve-se resultados pertinentes. Al?m disso, foi realizada um breve an?lise de n?veis de retornos quanto a diferentes valores do r, e uma sum?ria an?lise descritiva dos dados reais que ser?o utilizados nas aplica??es do modelo proposto. E por fim, a aplica??o do modelo proposto para os dados de cotas do rio Parna?ba e Paran?, al?m de dados de retornos di?rios da Nasdaq.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/24282 |
Date | 28 August 2017 |
Creators | Silva, Wyara Vanesa Moura e |
Contributors | 30862929890, Morales, Fidel Ernesto Castro, 05991873798, Lopes, Hedibert Freitas, 93427743772, Pereira, Marcelo Bourguignon, Nascimento, Fernando Ferraz do |
Publisher | PROGRAMA DE P?S-GRADUA??O EM MATEM?TICA APLICADA E ESTAT?STICA, UFRN, Brasil |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds