Return to search

Um estimador de erro a posteriori para a equação do transporte de contaminantes em regime de pequena advecção / A posteriori error estimate for the contaminant transport equation in small advection regime

Vários modelos computacionais que implementam o transporte de soluto em meio poroso saturado surgem constantemente em publicações científicas devido à suma importância dada à compreensão e previsão do transporte de constituintes dissolvidos em água subterrânea. As soluções numéricas obtidas por esquemas computacionais não estão imunes aos erros de discretização. No entanto, a confiabilidade nos resultados obtidos das complexas operações provenientes da dinâmica de fluidos computacional pode ser aumentada através de estimadores de erro a posteriori que indicam a precisão da solução numérica de um modelo matemático que simula o fenômeno físico de interesse. Neste trabalho é apresentado um estimador residual para a equação parabólica que descreve os fenômenos de advecção-dispersão-reação (ADR) em meio poroso saturado, considerando o transporte em regime de pequena advecção. A solução numérica da equação ADR é obtida pelo método dos elementos finitos que emprega termos upwind para minimizar as inconvenientes oscilações espúrias. A implementação do código computacional para obter essa solução numérica e o seu correspondente erro a posteriori, é feita em linguagem JAVA na plataforma Eclipse seguindo o paradigma da Programação Orientada a Objetos (POO). A solução numérica da equação elíptica do fluxo subterrâneo e o seu estimador de erro com características de recuperação do gradiente, o estimador ZZ, também são implementados no código JAVA. Assim, a solução da equação do transporte é obtida em função da reusabilidade POO prevista na implementação da equação do fluxo. A comparação da solução numérica do modelo ADR 2D com a correspondente solução analítica disponível na literatura, demonstra que o estimador residual apresenta excelentes índices de eficiência. Os resultados numéricos obtidos mostraram que o estimador residual encontra-se limitado inferior e superiormente pelo erro real da solução em malha grosseira. O estimador ZZ mostrou-se inadequado para a análise do erro de aproximação das equações ADR. Os exemplos selecionados para verificação e aplicação do estimador residual abrangem, em diferentes escalas, modelos que descrevem reação de primeira ordem e modelos com fenômenos de sorção e retardamento na migração do contaminante em meio poroso saturado. Em conseqüência, o estimador residual proposto provou ser computável, eficiente e robusto no sentido de abranger uma grande variedade das aplicações dos fenômenos de transporte de contaminantes em meio poroso saturado e regime de pequena advecção. / Several computational models that implement the solute migration in saturated porous media constantly appear in scientific publications due to the great importance given to the understanding and forecast of the solute transport in groundwater. The numerical solutions obtained by computational schemes are not immune to errors related to the discretization process. However, the reliability of the results obtained by the complex operations of the computational fluids dynamics can be enhanced by a posteriori error estimates that indicate the accuracy of the numerical solution. In this work a residual error estimator is presented for the parabolic equation that describes the advection-dispersion-reaction phenomena (ADR) in saturated porous media, considering the transport in small advection regime. The numerical solution of the ADR equation is obtained by the finite element method using upwind terms to minimize the spurious oscillations. The computational code and the correspondent a posteriori error estimates are implemented in Java language following the Object Oriented Programming (OOP) paradigm in Eclipse platform. The numerical solution of the elliptic groundwater flow equation and the respective error estimates with gradient recovery characteristic, the ZZ-estimator, are also implemented in the JAVA code. The solution of the transport equation is obtained as a consequence of the OOP reusability intended in the implementation of the flow equation. The numerical solution of the ADR 2D simulation compared to the analytical solution available in the literature, demonstrate the excellent effectivity index presented by the residual error estimator. The obtained results indicate that the residual error estimator is lower and upper bounded by a solution in coarse mesh. The ZZ-estimator showed to be inadequate for the error analysis of the ADR equations. The examples selected for validation and application of the residual estimator include, in distinct scales, models that describe reaction of first order and models with sorption and retardation phenomena in the pollutant migration in saturated porous media. Therefore, the proposed residual error estimator proved to be computable, efficient and robust in the sense of solving a great variety of applications of transport phenomena in saturated porous media at small advection regime.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06052010-154127
Date19 March 2010
CreatorsAlessandro Firmiano de Jesus
ContributorsEdson Cezar Wendland, Regina Célia Cerqueira de Almeida, Norberto Mangiavacchi, Sergio Persival Baroncini Proenca, Jackson Roehrig
PublisherUniversidade de São Paulo, Engenharia (Hidráulica e Saneamento), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds