Dans cette thèse, nous nous proposons d'étudier quelques paramètres fonctionnels lorsque les données sont générées à partir d'un modèle de régression à indice simple. Nous étudions deux paramètres fonctionnels. Dans un premier temps nous supposons que la variable explicative est à valeurs dans un espace de Hilbert (dimension infinie) et nous considérons l'estimation de la densité conditionnelle par la méthode de noyau. Nous traitons les propriétés asymptotiques de cet estimateur dans les deux cas indépendant et dépendant. Pour le cas où les observations sont indépendantes identiquement distribuées (i.i.d.), nous obtenons la convergence ponctuelle et uniforme presque complète avec vitesse de l'estimateur construit. Comme application nous discutons l'impact de ce résultat en prévision non paramétrique fonctionnelle à partir de l'estimation de mode conditionnelle. La dépendance est modélisée via la corrélation quasi-associée. Dans ce contexte nous établissons la convergence presque complète ainsi que la normalité asymptotique de l'estimateur à noyau de la densité condtionnelle convenablement normalisée. Nous donnons de manière explicite la variance asymptotique. Notons que toutes ces propriétés asymptotiques ont été obtenues sous des conditions standard et elles mettent en évidence le phénomène de concentration de la mesure de probabilité de la variable fonctionnelle sur des petites boules. Dans un second temps, nous supposons que la variable explicative est vectorielle et nous nous intéressons à un modèle de prévision assez général qui est la régression robuste. A partir d'observations quasi-associées, on construit un estimateur à noyau pour ce paramètre fonctionnel. Comme résultat asymptotique on établit la vitesse de convergence presque complète uniforme de l'estimateur construit. Nous insistons sur le fait que les deux modèles étudiés dans cette thèse pourraient être utilisés pour l'estimation de l'indice simple lorsque ce dernier est inconnu, en utilisant la méthode d'M-estimation ou la méthode de pseudo-maximum de vraisemblance, qui est un cas particulier de la première méthode.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00871026 |
Date | 10 December 2012 |
Creators | Attaoui, Said |
Publisher | Université du Littoral Côte d'Opale |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds