Les technologies de traduction automatique existantes sont à présent vues comme une approche prometteuse pour aider à produire des traductions de façon efficace et à coût réduit. Cependant, l'état de l'art actuel ne permet pas encore une automatisation complète du processus et la coopération homme/machine reste indispensable pour produire des résultats de qualité. Une pratique usuelle consiste à post-éditer les résultats fournis par le système, c'est-à-dire effectuer une vérification manuelle et, si nécessaire, une correction des sorties erronées du système. Ce travail de post-édition effectué par les utilisateurs sur les résultats de traduction automatique constitue une source de données précieuses pour l'analyse et l'adaptation des systèmes. La problématique abordée dans nos travaux s'intéresse à développer une approche capable de tirer avantage de ces retro-actions (ou post-éditions) d'utilisateurs pour améliorer, en retour, les systèmes de traduction automatique. Les expérimentations menées visent à exploiter un corpus d'environ 10 000 hypothèses de traduction d'un système probabiliste de référence, post-éditées par des volontaires, par le biais d'une plateforme en ligne. Les résultats des premières expériences intégrant les post-éditions, dans le modèle de traduction d'une part, et par post-édition automatique statistique d'autre part, nous ont permis d'évaluer la complexité de la tâche. Une étude plus approfondie des systèmes de post-éditions statistique nous a permis d'évaluer l'utilisabilité de tels systèmes ainsi que les apports et limites de l'approche. Nous montrons aussi que les post-éditions collectées peuvent être utilisées avec succès pour estimer la confiance à accorder à un résultat de traduction automatique. Les résultats de nos travaux montrent la difficulté mais aussi le potentiel de l'utilisation de post-éditions d'hypothèses de traduction automatiques comme source d'information pour améliorer la qualité des systèmes probabilistes actuels.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00995104 |
Date | 09 April 2013 |
Creators | Potet, Marion |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds