Return to search

Estimation de modèles de mélange probabilistes: une proposition pour un fonctionnement réparti et décentralise

Cette th`ese traite de l'estimation statistique distribu ́e, avec la motivation de, et l'application `a l'indexation multim ́edia par le contenu. Les algorithmes et les donn ́ees de divers contributeurs coop ́ereront vers un apprentissage statistique collectif. La contribution est un arrangement pour estimer une densit ́e de probabilit ́e multivariable, dans le cas ou` cette densit ́e prend la forme d'un mod`ele de m ́elange gaussien. Dans ce cadre, l'agr ́egation des mod`eles probabilistes de m ́elanges gaussiens de la mˆeme classe, mais estim ́es `a plusieurs nœuds sur diff ́erents ensembles de donn ́ees, est une n ́ecessit ́e typique `a laquelle nous nous int ́eressons dans cette th`ese. Les approches propo- s ́ees pour la fusion de m ́elanges gaussiens exigent uniquement le calcul mod ́er ́e `a chaque nœud et peu de donn ́ees de transit entre les nœuds. Ces deux propri ́et ́es sont obtenues en agr ́egeant des mod`eles via leurs (peu) param`etres plutˆot que par les donn ́ees multim ́edia. Dans la premi`ere approche, en supposant que les m ́elanges sont estim ́es ind ́ependamment, nous propageons leurs param`etres de fa ̧con d ́ecentralis ́ee (gossip), dans un r ́eseau, et agr ́egeons les mod`eles `a partir des nœuds reli ́es entre eux, pour am ́eliorer l'estimation. Les mod`eles de m ́elange sont en fait concat ́en ́es puis r ́eduits `a un nombre appropri ́e de composants gaussiens. Une modification de la divergence de Kullback conduit `a un processus it ́eratif pour estimer ce mod`ele agr ́eg ́e. Afin d'ap- porter une am ́elioration, l'agr ́egation est r ́ealis ́ee par la mod ́elisation bay ́esienne du probl`eme de groupement de composant de mod`ele de m ́elange gaussien et est r ́esolue en utilisant la m ́ethode variationnelle, appliqu ́ee au niveau de composant. Cela permet de d ́eterminer, par un processus simple, peu couˆteux et pr ́ecis, les attributions des composants qui devraient ˆetre agr ́eg ́es et le nombre de composants dans le m ́elange apr`es l'agr ́egation. Comme seulement les param`etres du mod`ele sont ́echang ́es sur le r ́eseau, le calcul et la charge du r ́eseau restent tr`es mod ́er ́es.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00450587
Date22 October 2008
CreatorsNikseresht, Afshin
PublisherUniversité de Nantes
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds