Return to search

Maximum likelihood estimation of nonlinear factor analysis model using MCECM algorithm.

by Long Mei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 73-77). / Abstracts in English and Chinese. / Acknowledgements --- p.iv / Abstract --- p.v / Table of Contents --- p.vii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Nonlinear Factor Analysis Model --- p.1 / Chapter 1.2 --- Main Objectives --- p.2 / Chapter 1.2.1 --- Investigation of the performance of the ML approach with MCECM algorithm in NFA model --- p.2 / Chapter 1.2.2 --- Investigation of the Robustness of the ML approach with MCECM algorithm --- p.3 / Chapter 1.3 --- Structure of the Thesis --- p.3 / Chapter 2 --- Theoretical Background of the MCECM Algorithm --- p.5 / Chapter 2.1 --- Introduction of the EM algorithm --- p.5 / Chapter 2.2 --- Monte Carlo integration --- p.7 / Chapter 2.3 --- Markov Chains --- p.7 / Chapter 2.4 --- The Metropolis-Hastings algorithm --- p.8 / Chapter 3 --- Maximum Likelihood Estimation of a Nonlinear Factor Analysis Model --- p.10 / Chapter 3.1 --- MCECM Algorithm --- p.10 / Chapter 3.1.1 --- Motivation of Using MCECM algorithm --- p.11 / Chapter 3.1.2 --- Introduction of the Realization of the MCECM algorithm --- p.12 / Chapter 3.1.3 --- Implementation of the E-step via the MH Algorithm --- p.13 / Chapter 3.1.4 --- Maximization Step --- p.15 / Chapter 3.2 --- Monitoring Convergence of MCECM --- p.17 / Chapter 3.2.1 --- Bridge Sampling Method --- p.17 / Chapter 3.2.2 --- Average Batch Mean Method --- p.18 / Chapter 4 --- Simulation Studies --- p.20 / Chapter 4.1 --- The First Simulation Study with the Normal Distribution --- p.20 / Chapter 4.1.1 --- Model Specification --- p.20 / Chapter 4.1.2 --- The Selection of System Parameters --- p.22 / Chapter 4.1.3 --- Monitoring the Convergence --- p.22 / Chapter 4.1.4 --- Simulation Results for the ML Estimates --- p.25 / Chapter 4.2 --- The Second Simulation Study with the Normal Distribution --- p.34 / Chapter 4.2.1 --- Model Specification --- p.34 / Chapter 4.2.2 --- Monitoring the Convergence --- p.35 / Chapter 4.2.3 --- Simulation Results for the ML Estimates --- p.38 / Chapter 4.3 --- The Third Simulation Study on Robustness --- p.47 / Chapter 4.3.1 --- Model Specification --- p.47 / Chapter 4.3.2 --- Monitoring the Convergence --- p.48 / Chapter 4.3.3 --- Simulation Results for the ML Estimates --- p.51 / Chapter 4.4 --- The Fourth Simulation Study on Robustness --- p.59 / Chapter 4.4.1 --- Model Specification --- p.59 / Chapter 4.4.2 --- Monitoring the Convergence --- p.59 / Chapter 4.4.3 --- Simulation Results for the ML Estimates --- p.62 / Chapter 5 --- Conclusion --- p.71 / Bibliography --- p.73

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325258
Date January 2005
ContributorsLong, Mei., Chinese University of Hong Kong Graduate School. Division of Statistics.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 77 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0021 seconds