Made available in DSpace on 2018-08-24T22:56:07Z (GMT). No. of bitstreams: 1
tese_9916_Tese_versao_final.pdf: 3910739 bytes, checksum: 53a25e4e46a439f2c6d5f8e7d3510675 (MD5)
Previous issue date: 2016-04-01 / as questões relativas à qualidade do ar têm se tornado cada vez mais importantes, uma vez que vários problemas de saúde decorrem da poluição atmosférica. Além disso, a poluição do ar contribui para a degradação do meio ambiente e, consequentemente, para o agravamento do efeito estufa. Dessa forma, diversos estudos adotando técnicas estatísticas têm sido realizados, com o intuito de contribuir na tomada de decisões dos agentes públicos e privados no que diz respeito ao combate à poluição, à prevenção de altas concentrações e à formulação de legislações para esse fim. Uma das metodologias estatísticas adotadas é a análise de componentes principais (ACP) clássica, sendo a mesma utilizada para o redimensionamento de rede, em análises de cluster, em análise de regressão, entre outros. No entanto, observa-se que, entre os estudos que têm adotado a ACP clássica, uma característica comum é negligenciar a heteroscedasticidade condicional e/ou a presença de outliers aditivos, que pode levar à resultados espúrios (enganosos), uma vez que a matriz de autocovariância estimada pode ser viesada (estimada incorretamente). Nota-se que as séries temporais relacionadas à poluição atmosférica tendem à apresentar heteroscedasticidade condicional e outliers aditivos. Assim, o primeiro artigo desta tese propôs aplicar um filtro multivariado VARFIMA-GARCH aos dados originais e utilizar a ACP clássica sobre os resíduos do modelo VARFIMA-GARCH. Com esse modelo, buscou-se filtrar, além da volatilidade, a correlação temporal e o comportamento de memória longa. A aplicação da ACP sobre os resíduos do modelo VARFIMA-GARCH mostrou-se mais coerente com as características ambientais da Região da Grande Vitória (RGV), Espírito Santo, Brasil, do que a aplicação usando os dados originais. No segundo artigo, que é a principal contribuição desta tese, a técnica de componentes principais com volatilidade (PVC), proposta por Hu e Tsay (2014), foi estendida para uma abordagem robusta (RPVC), a fim de capturar a volatilidade presente nos processos temporais multivariados, mas, levando-se em consideração os efeitos de outliers aditivos sobre a covariância condicional, uma vez que esses outliers podem mascarar (esconder) a heteroscedasticidade condicional ou, até mesmo, produzir efeitos voláteis espúrios, quando os dados não apresentarem volatilidade. O método RPVC proposto melhorou as predições dos picos de concentração do poluente MP10, na estação de Laranjeiras, RGV.
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/10332 |
Date | 01 April 2016 |
Creators | MONTE, E. Z. |
Contributors | BONDON, P., ISPANY, M., MUNARO, C. J., DIAS, T. L., Reis Jr, N.C., REISEN, V. A. |
Publisher | Universidade Federal do Espírito Santo, Doutorado em Engenharia Ambiental, Programa de Pós-Graduação em Engenharia Ambiental, UFES, BR |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds