Return to search

INVESTIGATION OF Ir(100) STRUCTURAL AND ELECTRONIC PROPERTIES TOWARDS C-H BOND ACTIVATION IN STEAM ETHANE REFORMING

The reaction barrier and heat of formation of the various dehydrogenation reactions involved in the steam reforming of ethane is a critical concern in the applications and understanding of these reactions. Focusing on Ir-based catalyst, we report a comprehensive reaction network of dehydrogenation of ethane on Ir(100) based on extensive density functional theory calculations performed on 10 C-H bond cleavage reactions, utilizing the Vienna Ab Initio Package codes. The geometric and electronic structures of the adsorption of C2Hx species with corresponding transition-state structures is reported. We found that the C-H bond in CH3C required the most energy to activate, due to the most stable four-fold hollow adsorption site configuration. Ethane can easily dissociate to CH3CH and CH2CH2 on Ir(100) and further investigation of surface temperature dependence will contribute to the research effort in this area. By using the degree of dehydrogenation of the reactant species as a variable to correlate the C-H bond cleavage barrier as well as reaction energy. DFT studies reveal that the surface Ir(100) to a great extent promotes ethane dehydrogenation when compared to other surfaces.

Identiferoai:union.ndltd.org:siu.edu/oai:opensiuc.lib.siu.edu:theses-4152
Date01 August 2023
CreatorsOre, Rotimi Mark
PublisherOpenSIUC
Source SetsSouthern Illinois University Carbondale
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses

Page generated in 0.002 seconds