Return to search

Palladium-Based Catalysts for Ethanol Electrooxidation in Alkaline Media

Direct ethanol fuel cells have been shown to be a good alternative to internal combustion engines in order to reduce the CO2 emissions. In this study, Pd and Pd-based nanocatalysts were deposited on various supports (carbon black, graphene, SnO2, CeO2, TiO2, TiO2 nanotubes and SnO2/TiO2 nanotubes) and their effects on the catalytic properties of the deposited metal for ethanol oxidation in alkaline media are studied. These modifications to the catalytic systems have shown to cause an increase in the reaction rate at the surface of the catalyst and to reduce the overpotential of the ethanol oxidation reaction. Two different promotion mechanisms have been identified. Firstly, the supply of OH- ions at the metal-support interface facilitates the oxidation of adsorbed molecules on neighbouring Pd sites. Secondly, an increase in electron density of Pd nanoparticles with increasing support reducibility modifies the adsorption strength of ethanol and its oxidation intermediates.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/32201
Date January 2015
CreatorsBrazeau, Nicolas
ContributorsBaranova, Olena
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0159 seconds