Sulfonated polyaromatic hydrocarbon membranes have emerged as desirable candidates for proton exchange membranes (PEMs) due to their excellent mechanical properties, high thermal and chemical stability, and low cost. Specifically, sulfonated multiblock copolymers are attractive because their phase-separated morphologies aide in facile proton transport. In this work, the functionalization of semicrystalline gels of poly(ether ether ketone) (PEEK) is explored as a novel post-polymerization method to prepared blocky copolymers, and the effect of copolymer architecture on membrane physical properties, structure, and performance is extensively investigated. First, the blocky sulfonation of PEEK was explored to prepare blocky copolymers (SPEEK) with densely sulfonated domains and unfunctionalized, crystallizable domains. Compared to random SPEEK ionomers at similar ion content, blocky SPEEK exhibited enhanced crystallizability, decreased melting point depression, and faster crystallization kinetics. Phase separation between the hydrophilic sulfonated blocks and hydrophobic PEEK blocks, aided by polymer crystallization, resulted in enhanced water uptake, superior proton conductivity, and more closely associated ionic domains than random SPEEK.
Furthermore, the random and blocky bromination of PEEK was investigated to prepare PEEK derivatives (BrPEEK) with reactive aryl-bromides. Spectroscopic evidence revealed long domains of unfunctionalized homopolymer for blocky BrPEEK, and this translated to an increased degree of crystallinity, higher melting temperature, and more rapid crystallization kinetics than random BrPEEK at similar degrees of bromination. The subsequent sulfonation of blocky BrPEEK resulted in a hydrophilic-hydrophobic blocky copolymer with clear multi-phase behavior. The phase-separated morphology contributed to decreased water uptake and areal swelling compared to random SPEEK and resulted in considerably higher proton conductivity at much lower hydration levels. Moreover, Ullmann coupling introduced superacidic perfluorosulfonic acid side chains to the BrPEEK backbone, which yielded membranes with less water content and less dimensional swelling than random SPEEK. Superior proton transport than random SPEEK was observed due to the superacid side chain and wider hydrophilic channels within the membranes, resulting in more continuous pathways for proton transport.
Overall, this work provided a novel platform for the preparation of functionalized PEEK membranes using a simple post-polymerization functionalization procedure. The established methods produced blocky-type copolymers with properties reminiscent of multiblock copolymers prepared by direct polymerization from monomers/oligomers. / PHD / Block copolymers are an important class of polymers that are composed of two or more blocks of distinct polymeric segments covalently tethered to one another. Dissimilarity in the chemical nature of the blocks leads to self-organization into well-defined structures, and this unique structural order imparts material properties that are different from (and often superior to) the properties of the individual blocks alone. Thus, block copolymers are advantageous for a diverse array of applications including membranes, gas separation, water purification, medical devices, etc. Although considerable synthetic progress has been made towards discovering novel methods to prepare block copolymers, their widespread use is somewhat limited by the complex, energy-intensive procedures necessary to precisely control the block sequencing during polymerization. In this dissertation, a straightforward, inexpensive physical procedure is explored to synthesize blocky copolymers with controlled sequencing from commercially available polymers. This process relies on performing reactions in the gel state, whereby segments of the polymer chain are effectively shielded from the functionalizing chemistry. In particular, the gel state sulfonation and bromination of poly(ether ether ketone), a high performance polymer, is investigated to develop novel, blocky materials for membrane applications. This work not only expands the methodology towards the synthesis of block copolymers, but alaso provides critical insight into the effect of copolymer architecture on membrane physical properties, structure, and performance. Furthermore, this work provides an economically feasible method to prepare blocky copolymers from commercially derived materials, thereby providing a means to progress the widespread use of block copolymers in industry.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/99463 |
Date | 07 February 2019 |
Creators | Anderson, Lindsey J. |
Contributors | Chemistry, Moore, Robert Bowen, Riffle, Judy S., Liu, Guoliang, Long, Timothy E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0033 seconds