Return to search

Synthesis And Characterization Of Carbonyl - Tungsten(0) Complexes Of [n,n&#039 / -bis(ferrocenylmethylene)ethylenediamine]

In this study a bidentate ligand containing two ferrocenyl moieties, N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine, was prepared by condensation reaction of ferrocenecarboxyaldehyde and ethylenediamine on refluxing in benzene. The molecule was identified by IR, Raman, UV-VIS, 1H-, 13C-NMR spectroscopies. Then, this bidentate ligand was reacted with pentacarbonylbis-(trimethyl)silylethyne)tungsten(0). The ligand substitution reaction in dichloromethane yielded the new complex, tetracarbonyl [N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine]tungsten(0) (W(CO)4(BFEDA)). This new complex was isolated from the reaction solution in the form of orange crystals and fully characterized by elemental analysis, IR, UV-VIS, MS, 1H- and 13C-NMR spectroscopies. As a bidentate ligand, [N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine] binds the metal atom in the two cis positions in the pseudooctahedral geometry of the tungsten-complex.

Electrochemistry of the tetracarbonyl [N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine]tungsten(0) was studied by cyclic voltammetry, and controlled potential electrolysis combined with the UV-VIS spectroscopy. One irreversible oxidation and three reversible oxidations were observed in the cyclic voltammogram. One of these reversible and the irreversible oxidations are attributed to tungsten and the other two reversible oxidations to iron centers. It is found that the two ferrocene groups started communication with each other after formation of tungsten-complex.

N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine was also reacted with photogenerated pentacarbonyl(tetrahydrofuran)tungsten(0) complex and the pentacarbonyl [N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine]tungsten(0) (W(CO)5(BFEDA)) as an intermediate on the route to the tetracarbonyl[N,N&#039 / -bis(ferrocenylmethylene)ethylenediamine]tungsten(0) was isolated from the reaction medium in the form of red crystals and fully characterized by, IR, 1H- and 13C-NMR spectroscopies. The conversion of W(CO)5(BFEDA) to the W(CO)4(BFEDA) in dichloromethane by a ring closure mechanism was observed by IR spectroscopy.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606101/index.pdf
Date01 June 2005
CreatorsKavakli, Cuneyt
ContributorsOzkar, Prof. Dr. Saim
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.002 seconds