Return to search

Campos de caminhos em variedades topológicas / Path fields on topological manifolds

Esta dissertação expõe o estudo realizado sobre o artigo de R. Brown, citado na bibliografia, e sobre os conceitos necessários para a compreensão deste material. Entre os principais conceitos e resultados preliminares discutidos, podemos citar: topologia de espaços de funções, teoria de homotopia, espaços compactos ANR, característica de Euler de um compacto ANR, teorema de Lefschetz, espaços fibrados, e campos de caminhos. Os principais resultados discutidos na dissertação são os teoremas centrais do artigo de Brown: toda n-variedade topológica compacta admite um campo de caminhos com no máximo uma singularidade; e, uma n-variedade topológica compacta orientável admite um campo de caminhos sem singularidades se, e somente se, sua característica de Euler é zero. Discutimos também, suas respectivas consequências em teoria de ponto fixo / This essay has the purpose of exposing the studies on the paper by R. Brown, quoted on the references, and on the concepts necessary to the comprehension of it. Among the main concepts and preliminary results discussed, we can cite: topology of function spaces, homotopy theory, ANR compact spaces, Euler characteristic of a compact ANR, Lefschetz theorem, fiber spaces, and field paths. The main results discussed in the text are the central theorems presented on Brown\'s paper: every compact topological n-manifold admits a path field with at most one singularity, and a compact orientable topological n-manifold M admits a nonsingular path field if and only if the Euler characteristic of M is zero. We also discussed their consequences on fixed point theory

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12012011-204505
Date13 December 2010
CreatorsRibeiro, Paulo Augusto
ContributorsBorsari, Lucilia Daruiz
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds