Return to search

Modélisation de l'injection de pétrole pour les procédés FCC (Fluid Catalytic Cracking) / Modeling an oil injector for a FCC reactor

Cette thèse est une entreprise commune de VINCI Technologies et du laboratoire CNRS CORIA. De nombreux injecteurs comportent une zone de mélange interne dans laquelle les phases liquides et gazeuses sont toutes deux présentes dans une proportion significative. Par conséquent, cette zone appartient à la catégorie des écoulements diphasiques denses. Pour simuler la dispersion du liquide et caractériser le spray de ces injecteurs, des modèles appropriés sont nécessaires. Les points clés de cette approche sont la dispersion du liquide qui peut être associé au flux liquide turbulent et la quantité de surface liquide-gaz. En particulier, ce manuscrit rapporte, d’une part le développement théorique des modèles de la famille ELSA et, d’autre part, les approximations industrielles correspondantes. Le solveur proposé bascule dynamiquement du spray ICM au spray de sous- maille, à travers le concept ELSA et grâce à l’indicateur basé sur la résolution (IRQ). D’autre part, une fois la zone diluée se forme, l’approche ELSA est couplée à la méthode d’écoulement multiphase, qui vise à déterminer la distribution du spray à l’aide de l’équation WBE. Cette dernière équation est résolue avec une méthode hybride Euler-Lagrange. Le but est de résoudre l’équation WBE avec une approche stochastique Lagrangienne, tout en préservant la compatibilité avec la description Eulerienne de l’écoulement diphasique, basée sur ELSA, pour tirer parti des deux approches. Finalement, ces approches développées ont été utilisées pour des applications industrielles montrant leur robustesse et leur capacité à aider dans le processus de développement de nouveaux injecteurs. / This PhD is a joint venture between VINCI Technologies and the CNRS Laboratory CORIA. For its application, VINCI Technologies, developed mainly oil-related equipments and in particular injection/atomization systems. Some of these injectors are characterized by a very big geometrical dimensions (several meters long), that leads to very high Reynolds and Weber number. In addition, many injectors incorporate an internal mixing zone, in which liquid and gas phases are both present in a significant proportion. Consequently, this zone belongs to the dense two-phase flow category. To simulate the liquid dispersion and to characterize the spray formation special from these injectors, appropriate models are required. On its side, the CORIA team, has developed a suitable approach, so-called ELSA, based on the pioneering work of Borghi and Vallet [1, 2]. Key points of this approach are the liquid dispersion that can be associated to the turbulent liquid flux and the amount of liquid-gas surface that can be used to determine eventually the Sauter mean diameter (SMD) of the spray. During this PhD, the applications proposed by V INCI Technologies, have promoted a review of a large part of the multiphase flow approaches to find the more appropriate for each case. This has been the opportunity to clarify the range of application of each approach, and therefore stress the necessity to develop coupled approaches, in order to cover the proposed application in the most suitable way. In particular, this manuscript reports, in one hand, the theoretical development of the ELSA family models, and on the other hand, the corresponding industrial approximations. Since ELSA approaches are originally developed for RANS simulation of the dense zone, it has been extended to LES description. The link of this approach to the DNS¡ ICM approach, has been studied with a special care. The resulting proposed solver, switches dynamically from ICM to subgrid spray, through the ELSA concept, and thanks to resolution based indicator (IRQ). On the opposite side, once the dispersed spray is formed, the ELSA approach is coupled to multiphase flow method, that aims to determine the spray distribution through the WBE equation. This later equation, is solved with an original hybrid Euler-Lagrange method. The purpose is to solve the WBE equation with a Lagrange stochastic approach, and at the same time, preserving the compatibility to the Euler description of two-phase flow, based on ELSA, to benefit from both approaches. This coupled approach has been tested against academic experimental data coming from ECN research initiative, a combined DNS and experimental measurement of dispersed spray on a Diesel jet, and under an air-blast atomizer numerical test case, for which the mean liquid volume fraction has been measured. Eventually, these developed approaches have been applied to industrial application showing there robustness and their capacity to help in the process of design development of new injectors.

Identiferoai:union.ndltd.org:theses.fr/2018NORMR132
Date16 November 2018
CreatorsAñez, Javier
ContributorsNormandie, Demoulin, François-Xavier, Reveillon, Julien
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds