Forecasts of short term volcanic activity are generated using an event tree process that is driven by a set of empirical statistical models derived through logistic regression. Each of the logistic models are constructed from a sparse and geographically diverse dataset that was assembled from a collection of historic volcanic unrest episodes. The dataset consists of monitoring measurements (e.g. seismic), source modeling results, and historic eruption information. Incorporating this data into a single set of models provides a simple mechanism for simultaneously accounting for the geophysical changes occurring within the volcano and the historic behavior of analog volcanoes. A bootstrapping analysis of the training dataset allowed for the estimation of robust logistic model coefficients. Probabilities generated from the logistic models increase with positive modeling results, escalating seismicity, and high eruption frequency. The cross validation process produced a series of receiver operating characteristic (ROC) curves with areas ranging between 0.78 - 0.81, which indicate the algorithm has good predictive capabilities. In addition, ROC curves also allowed for the determination of a false positive rate and optimum detection threshold for each stage of the algorithm. The results demonstrate the logistic models are highly transportable and can compete with, and in some cases outperform, non-transportable empirical models trained with site specific information. The incorporation of source modeling results into the event tree’s decision making process has begun the transition of volcano monitoring applications from simple mechanized pattern recognition algorithms to a physical model based forecasting system.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3143 |
Date | 01 January 2012 |
Creators | Junek, William N |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.0021 seconds