Stochastic Evolution Equations Petr Čoupek Doctoral Thesis Abstract Linear stochastic evolution equations with additive regular Volterra noise are studied in the thesis. Regular Volterra processes need not be Gaussian, Markov or semimartingales, but they admit a certain covariance structure instead. Particular examples cover the fractional Brownian motion of H > 1/2 and, in the non-Gaussian case, the Rosenblatt process. The solution is considered in the mild form, which is given by the variation of constants formula, and takes values either in a separable Hilbert space or the space Lp(D, µ) for large p. In the Hilbert-space setting, existence, space-time regularity and large-time behaviour of the solutions are studied. In the Lp setting, existence and regularity is studied, and in concrete cases of stochastic partial differential equations, the solution is shown to be a space-time continuous random field.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:368518 |
Date | January 2017 |
Creators | Čoupek, Petr |
Contributors | Maslowski, Bohdan, Garrido-Atienza, María J., Hlubinka, Daniel |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0039 seconds