Return to search

Semilineární stochastické evoluční rovnice / Semilinear stochastic evolution equations

Stochastic partial differential equations have proven useful in many applied areas of mathematics, such as physics or mathematical finance. A major part of such equations consists of linear equations with additive noise. In certain cases, however, the drift part of the differential equation additionally contains a possibly problematic non-linear term, which makes it unsolvable by the standard methods and even a solution in the mild sense may be out of reach. In such situations, we may still find a solution in the weak sense by employing a suitable transformation of the probability space. This thesis deals with semilinear stochastic evolution equations in a separable Hilbert space, where the driving process is an element of a large class of processes - so called Volterra processes, which can be understood as a generalisation of the Wiener process and may be of use to model a wide range of phenomena. The weak solutions, however, have been studied so far only for equations with the cylindrical fractional Brownian motion as the driving process. In this thesis, we introduce a generalisation of the Girsanov theorem for cylindrical Gaussian Volterra processes and give, in full generality, sufficient conditions for the existence of a weak solution and the uniqueness of the equation in law. Further, we introduce...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:448080
Date January 2021
CreatorsKršek, Daniel
ContributorsMaslowski, Bohdan, Čoupek, Petr
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0018 seconds